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Abstract. The CAMBADA middle-size robotic soccer team is described in this 
paper for the purpose of qualification to RoboCup’2006. This team was de-
signed and developed by the authors, from scratch, in the last three years. The 
players, completely built in-house, incorporate several innovations at the hard-
ware level, particularly the sensing and computational subsystems. At the soft-
ware level, cooperative sensing uses a real-time database implemented over a 
real-time Linux kernel. Previous experience of the team in the simulation 
league has been highly relevant. The paper focuses on recent advances on vi-
sion, localization and monitoring/debugging software as well as a new ultra-
sound-based localization system. 

1   Introduction 

CAMBADA 1 is the RoboCup middle-size league soccer team of the University of 
Aveiro. This project, started officially in October 2003, is funded by the Portuguese 
research foundation (FCT) 2. CAMBADA participated in RoboCup’2004 and in the 
last two editions of the Portuguese Robotics Festival (RoboCup’2004 and ’2005). 

The previous CAMBADA Team Description Paper [2], prepared for Rob-
Cup’2004, provides a detailed overview of the team, as it was initially designed and 
developed. Some aspects of its design were demonstrated in RoboCup’2004 while 
others were implemented since then. The present paper provides a shorter overview of 
the project and then focuses on recent developments. 

The CAMBADA players were designed and completely built in-house.  The base-
line for robot construction is a cylindrical envelope, with 485 mm in diameter, which 
allows for a team of 5 robots, according to the rules. The mechanical structure of the 
players is layered and modular (Figure 1). Each layer can easily be replaced by an 
equivalent one. The components in the lower layer, namely motors, wheels, batteries 
and an electromechanical kicker, are attached to an aluminium plate placed 8 cm 
above the floor. The second layer contains the control electronics. The third layer con-

                                                           
1 CAMBADA is acronym of Cooperative Autonomous Mobile roBots with Advanced Distrib-

uted Architecture; ‘cambada’ is also a Portuguese word for ‘band’ or ‘mob’. 
2 Project POSI/ROBO/43908/2002, partially funded by FEDER. 



tains a computer, at 22.5 cm from the floor. The players are capable of holonomic 
motion, based on three omni-directional roller wheels [5]. 

The main sensors in each player 
are two webcams, both equipped 
with wide-angular lenses and in-
stalled at approximately 80cm above 
the floor. Both cameras deliver 
320x240 YUV images at a rate of 20 
frames per second (fps). One of the 
cameras faces the field orthogonally, 
enabling to capture a 360 degrees 
view around the robot, approxi-
mately with a 1m radius. This so-
called omni-directional vision sys-
tem is used for obstacle avoidance 
and ball handling. 

The other camera points forward 
in the direction of the front of the 
robot, with  57º inclination  of   with 
respect to its vertical axis. This fron-
tal system  is  used  to  track  the ball 
at medium and long distances, as  
well  as  the  goals,  corner  posts  

 

Fig. 1. One of the CAMBADA players 

and players. All the objects of interest are detected using simple color-based analysis, 
applied in a color space obt ained from the YUV space by computing phases and 
modules in the UV plane. 

The robots computing system architecture follows the fine-grain distributed model 
[6]  where most of the elementary functions, e.g. closed-loop control of complex ac-
tuators, are encapsulated in small microcontroller-based nodes, connected through a 
network. A PC-based node is used to execute higher-level control functions and to 
facilitate the interconnection of off-the-shelf devices, e.g. cameras, through standard 
interfaces, e.g. USB or Firewire (Fig. 3). For this purpose, Controller Area Network 
(CAN), a real-time fieldbus typical in distributed embedded systems, has been chosen. 
This network is complemented with a higher-level transmission control protocol to 
enhance its real-time performance, composability and fault-tolerance, namely the 
FTT-CAN protocol (Flexible Time-Triggered communication over CAN) [3]. The 
communication among robots uses the standard wireless LAN protocol IEEE 802.11x 
profiting from large availability of complying equipment. 

The software system in each player is distributed among the various computational 
units. High level functions run on the computer, in Linux operating system with RTAI 
(Real-Time Application Interface). Low level functions run partly on the 
microcontrollers. A cooperative sensing approach based on a Real-Time Database 
(RTDB) [1,2,4,7,8] has been adopted. The RTDB is a data structure where players 
share their world models. It is updated and replicated in all players in real-time. 
    The high-level processing loop starts by integrating perception information 
gathered locally by the player. This includes information coming from the vision 
processes, which is stored in a Local Area of the RTDB, and odometry information 
coming from the holonomic base via FTT-CAN. After integration, the world state can 



be updated in the shared area of the RTDB. The next step is to integrate local 
information with information shared by teammates. This will be the basis for taking 
decisions according to a finite state machine. Each state is characterized by the 
behavior pattern that is executed. A very basic coordination mechanism is currently 
supported. According to this mechanism, the player that takes control of the ball is the 
player closest to the ball. Other players take strategic positions in the field based on 
their distances to the goals. We expect to improve the coordination mechanism as 
soon as localization capabilities are fully evaluated. This also depends on the 
availability of monitoring and debugging tools, which are under development. 

2   Real-time vision architecture 

A modular multi-process architecture was adopted for the vision software 
subsystem (Figure 2) [7]. For each camera, one process is automatically triggered 
whenever a new image frame is ready for dowload. The frame data are placed in 
shared image buffers, which are afterwards analyzed by the object detection proc-
esses, generically designated by proc_obj:x, x={1,2,…N}. These processes are encap-
sulated in separate Linux processes. Once started, each process gets a pointer to the 
most recent image frame available and starts tracking the respective object. Once fin-
ished, the resulting information (e.g. object detected or not, position, confidence) is 
placed in the real-time database. This database may be accessed by any other proc-
esses on the system, particularly for world state update. 

 

Fig. 2. Vision subsystem software architecture 

The activation of the distinct image-processing activities is carried out by a process 
manager. Each object tracking process (i) is associated with a period (Pi) and a phase 
(ϕi), expressed as integer number of image frames. For every frame f, the process 
manager activates all the processes that verify [(f-ϕi)% Pi ]=0. This allows allocating 
periods according to the specific attributes of each object (e.g., the ball is highly dy-
namic and is tracked in every frame while the relative goal position is less dynamic 
and can be tracked every four frames) as well as to de-phase them in the time domain, 
minimizing the mutual interference and consequently their response time and jitter.  

Scheduling of vision related processes relies on the real-time features of the Linux 
kernel, namely the FIFO scheduler and priorities in the range 15-50. At this level, 



Linux executes each process to completion, unless the process blocks or is preempted 
by other process with higher real-time priority. This ensures that the processes are 
executed strictly according to their priority with full preemption. The real-time fea-
tures of Linux are sufficient at this time-scale (periods multiple of 50ms). 

3   Information Integration and Localization 

Localization in the play field is a very basic requirement for implementing 
advanced coordination and cooperation strategies. Localization includes 
self-localization and localization of the ball and players. Localization is the main 
outcome of local and team-level information integration. As expected, odometry 
information is not enough to maintain sufficiently accurate localization information in 
CAMBADA [4]. After long distances or through collisions between players, it is very 
easy to reach positional error levels not acceptable for team coordination purposes. In 
collision-free runs of 100 m, we verified that the positional error grows roughly 
linearly with the distance travelled by the player. The error is around 1.5% to 2.% of 
the distance. Therefore, position errors of 2m can easily occur. 

 
Fig. 3. Effect of opportunistic vision-based calibration (example run) 

Localization in the currently working CAMBADA team is based on odometry 
information, updated in each iteration of the control loop, and calibrations performed 
based on vision information. The calibration mechanisms can be grouped as follows: 

− Opportunistic, based on a single landmark (goal, corner post, line) – not 
enough to derive the player’s position and orientation but enables calibration. 

− Opportunistic, based on two successively seen landmarks – enables to 
calculate position/orientation; error inherent to the vision system only. 

− Active – The player actively searches for two landmarks, e.g. by performing a 
full turn around itself. 

In opportunistic calibration, the vision-based positions/orientations are averaged 
with the internally kept values. Active localization is called in extreme situations, and 
the obtained values replace the previous values. When a change in internal values 
takes place, the new values are sent down to the odometry micro-controller. 

While monitoring/debugging tools are being developed, we have been resorting to 
time-consuming “manual” evaluation experiments. These experiments show that the 
position and orientation errors can be reduced to acceptable levels using the methods 



enumerated above. Figure 3 shows the localization performance in one experiment, in 
which the initial position error was set to 2.24m. We see that, after running for around 
17 meters and having performed 16 opportunistic calibrations, the position error was 
gradually reduced to ~1m. 

4   Ultrasound-based Localization 

In parallel with the vision-based localization capabilities described above, we have 
been developing an alternative/complementary localization system based on 
ultrasound sensors [9]. Advantage is taken from the fact that the goalkeeper is near the 
goal, being easy to obtain an absolute position in the field using visual information. 
The goalkeeper has one ultrasound emitter that transmits a pulse in a periodic way. 
The other robots have several ultrasound receivers that cover all the 360º around, and 
they reply a certain time after receiving the pulse from the goalkeeper. Each robot 
uses a different reply time in order to implement a time multiplexing of the answers. 
The goalkeeper knows the reply times of each robot, and in this way it can measure 
the propagation time of the sound to each robot and from this calculate the distance of 
each robot. The goalkeeper also has two ultrasonic sensors in order to measure the 
angle of the signal received from each robot. With these two values, it computes the x, 
y coordinates of the robots in the field. 

The ultrasound signals are processed using the DSP from Texas Instruments 2812. 
An initial proof-of-concept prototype was developed using simple algorithms. We use 
chirps as the transmitted signal and matched filters to detect the pulses. This way we 
managed to solve some of the problems related to multipath propagation and it is also 
possible to share the acoustic channel using different chirp signals for each robot. The 
first field experiments showed that the system works in real conditions measuring the 
coordinates of the robots with good accuracy. The system has full room to improve 
the accuracy of the measures by only changing the signal processing algorithms. 

5   Monitoring framework for multi-process/multi-agent systems 

Cambada robots run several processes and at the same time they interact with each 
other. They operate autonomously, taking many decisions per second based on sen-
sory information that changes dynamically and on shared information that is also sub-
ject to frequent changes. It is very hard to follow the robot’s reasoning based only on 
the external observation of its behavior. To aid this tuning and debugging process, a 
framework was developed to allow the visualization of the robots reasoning and syn-
chronize it with the observed robot’s behavior. 

Several constraints must be considered. The robot is executing several processes 
and in certain situations we should tune the behavior of the team as a whole instead of 
tuning individual robots. The framework is prepared to provide high-level information 
to the developer, useful for online observation, individual and team behavior tuning. 

During execution, robots may send information to a socket or to a local logfile. The 
following debug data is attached to every item of information: 



− Timestamp: Used to timeline the sequence and to synchronize information 
from several sources; 

− Category: A tree of categories may be defined to better organize and visualize 
information. A certain tree or subtree of categories can be hidden/displayed; 

− Level of detail: Useful to truncate the visualization at a certain level. 
Several types of records are allowed, like text, bookmarks, video images, etc. To 

synchronize logfiles from different robots two options are available: Use of the regular 
clock of the PC  with the inclusion of a NTP server in the team’s base station PC and 
NTP clients in the robots or the use of the RTAI distributed clock available from the 
RTAI layer in Linux. 

For file processing and reading, several features were implemented: 
− Multiple file opening and managing; 
− Time based interlace of records from the logfiles; this gives the user the feeling 

of one big logfile and allows to navigate the data on a unique time line. 
An application is being developed for reading and analyzing logfiles. 
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