
CAMBADA’2006: Team Description Paper

L. Almeida, J.L. Azevedo, G. Corrente, M.B. Cunha, A. Ferdowsi,
J.P. Figueiredo, P. Fonseca, S. Lopes, R. Marau, N. Lau, P. Pedreiras, A. Pereira,

 A. Pinho, J. Rocha, F. Santos, L. Seabra Lopes, V. Silva, J. Vieira

Transverse Activity on Intelligent Robotics
IEETA/DET – Universidade de Aveiro

3810-193 Aveiro, Portugal

Abstract. The CAMBADA middle-size robotic soccer team is described in this
paper for the purpose of qualification to RoboCup’2006. This team was de-
signed and developed by the authors, from scratch, in the last three years. The
players, completely built in-house, incorporate several innovations at the hard-
ware level, particularly the sensing and computational subsystems. At the soft-
ware level, cooperative sensing uses a real-time database implemented over a
real-time Linux kernel. Previous experience of the team in the simulation
league has been highly relevant. The paper focuses on recent advances on vi-
sion, localization and monitoring/debugging software as well as a new ultra-
sound-based localization system.

1 Introduction

CAMBADA 1 is the RoboCup middle-size league soccer team of the University of
Aveiro. This project, started officially in October 2003, is funded by the Portuguese
research foundation (FCT) 2. CAMBADA participated in RoboCup’2004 and in the
last two editions of the Portuguese Robotics Festival (RoboCup’2004 and ’2005).

The previous CAMBADA Team Description Paper [2], prepared for Rob-
Cup’2004, provides a detailed overview of the team, as it was initially designed and
developed. Some aspects of its design were demonstrated in RoboCup’2004 while
others were implemented since then. The present paper provides a shorter overview of
the project and then focuses on recent developments.

The CAMBADA players were designed and completely built in-house. The base-
line for robot construction is a cylindrical envelope, with 485 mm in diameter, which
allows for a team of 5 robots, according to the rules. The mechanical structure of the
players is layered and modular (Figure 1). Each layer can easily be replaced by an
equivalent one. The components in the lower layer, namely motors, wheels, batteries
and an electromechanical kicker, are attached to an aluminium plate placed 8 cm
above the floor. The second layer contains the control electronics. The third layer con-

1 CAMBADA is acronym of Cooperative Autonomous Mobile roBots with Advanced Distrib-

uted Architecture; ‘cambada’ is also a Portuguese word for ‘band’ or ‘mob’.
2 Project POSI/ROBO/43908/2002, partially funded by FEDER.

tains a computer, at 22.5 cm from the floor. The players are capable of holonomic
motion, based on three omni-directional roller wheels [5].

The main sensors in each player
are two webcams, both equipped
with wide-angular lenses and in-
stalled at approximately 80cm above
the floor. Both cameras deliver
320x240 YUV images at a rate of 20
frames per second (fps). One of the
cameras faces the field orthogonally,
enabling to capture a 360 degrees
view around the robot, approxi-
mately with a 1m radius. This so-
called omni-directional vision sys-
tem is used for obstacle avoidance
and ball handling.

The other camera points forward
in the direction of the front of the
robot, with 57º inclination of with
respect to its vertical axis. This fron-
tal system is used to track the ball
at medium and long distances, as
well as the goals, corner posts

Fig. 1. One of the CAMBADA players

and players. All the objects of interest are detected using simple color-based analysis,
applied in a color space obt ained from the YUV space by computing phases and
modules in the UV plane.

The robots computing system architecture follows the fine-grain distributed model
[6] where most of the elementary functions, e.g. closed-loop control of complex ac-
tuators, are encapsulated in small microcontroller-based nodes, connected through a
network. A PC-based node is used to execute higher-level control functions and to
facilitate the interconnection of off-the-shelf devices, e.g. cameras, through standard
interfaces, e.g. USB or Firewire (Fig. 3). For this purpose, Controller Area Network
(CAN), a real-time fieldbus typical in distributed embedded systems, has been chosen.
This network is complemented with a higher-level transmission control protocol to
enhance its real-time performance, composability and fault-tolerance, namely the
FTT-CAN protocol (Flexible Time-Triggered communication over CAN) [3]. The
communication among robots uses the standard wireless LAN protocol IEEE 802.11x
profiting from large availability of complying equipment.

The software system in each player is distributed among the various computational
units. High level functions run on the computer, in Linux operating system with RTAI
(Real-Time Application Interface). Low level functions run partly on the
microcontrollers. A cooperative sensing approach based on a Real-Time Database
(RTDB) [1,2,4,7,8] has been adopted. The RTDB is a data structure where players
share their world models. It is updated and replicated in all players in real-time.
 The high-level processing loop starts by integrating perception information
gathered locally by the player. This includes information coming from the vision
processes, which is stored in a Local Area of the RTDB, and odometry information
coming from the holonomic base via FTT-CAN. After integration, the world state can

be updated in the shared area of the RTDB. The next step is to integrate local
information with information shared by teammates. This will be the basis for taking
decisions according to a finite state machine. Each state is characterized by the
behavior pattern that is executed. A very basic coordination mechanism is currently
supported. According to this mechanism, the player that takes control of the ball is the
player closest to the ball. Other players take strategic positions in the field based on
their distances to the goals. We expect to improve the coordination mechanism as
soon as localization capabilities are fully evaluated. This also depends on the
availability of monitoring and debugging tools, which are under development.

2 Real-time vision architecture

A modular multi-process architecture was adopted for the vision software
subsystem (Figure 2) [7]. For each camera, one process is automatically triggered
whenever a new image frame is ready for dowload. The frame data are placed in
shared image buffers, which are afterwards analyzed by the object detection proc-
esses, generically designated by proc_obj:x, x={1,2,…N}. These processes are encap-
sulated in separate Linux processes. Once started, each process gets a pointer to the
most recent image frame available and starts tracking the respective object. Once fin-
ished, the resulting information (e.g. object detected or not, position, confidence) is
placed in the real-time database. This database may be accessed by any other proc-
esses on the system, particularly for world state update.

Fig. 2. Vision subsystem software architecture

The activation of the distinct image-processing activities is carried out by a process
manager. Each object tracking process (i) is associated with a period (Pi) and a phase
(ϕi), expressed as integer number of image frames. For every frame f, the process
manager activates all the processes that verify [(f-ϕi)% Pi]=0. This allows allocating
periods according to the specific attributes of each object (e.g., the ball is highly dy-
namic and is tracked in every frame while the relative goal position is less dynamic
and can be tracked every four frames) as well as to de-phase them in the time domain,
minimizing the mutual interference and consequently their response time and jitter.

Scheduling of vision related processes relies on the real-time features of the Linux
kernel, namely the FIFO scheduler and priorities in the range 15-50. At this level,

Linux executes each process to completion, unless the process blocks or is preempted
by other process with higher real-time priority. This ensures that the processes are
executed strictly according to their priority with full preemption. The real-time fea-
tures of Linux are sufficient at this time-scale (periods multiple of 50ms).

3 Information Integration and Localization

Localization in the play field is a very basic requirement for implementing
advanced coordination and cooperation strategies. Localization includes
self-localization and localization of the ball and players. Localization is the main
outcome of local and team-level information integration. As expected, odometry
information is not enough to maintain sufficiently accurate localization information in
CAMBADA [4]. After long distances or through collisions between players, it is very
easy to reach positional error levels not acceptable for team coordination purposes. In
collision-free runs of 100 m, we verified that the positional error grows roughly
linearly with the distance travelled by the player. The error is around 1.5% to 2.% of
the distance. Therefore, position errors of 2m can easily occur.

Fig. 3. Effect of opportunistic vision-based calibration (example run)

Localization in the currently working CAMBADA team is based on odometry
information, updated in each iteration of the control loop, and calibrations performed
based on vision information. The calibration mechanisms can be grouped as follows:

− Opportunistic, based on a single landmark (goal, corner post, line) – not
enough to derive the player’s position and orientation but enables calibration.

− Opportunistic, based on two successively seen landmarks – enables to
calculate position/orientation; error inherent to the vision system only.

− Active – The player actively searches for two landmarks, e.g. by performing a
full turn around itself.

In opportunistic calibration, the vision-based positions/orientations are averaged
with the internally kept values. Active localization is called in extreme situations, and
the obtained values replace the previous values. When a change in internal values
takes place, the new values are sent down to the odometry micro-controller.

While monitoring/debugging tools are being developed, we have been resorting to
time-consuming “manual” evaluation experiments. These experiments show that the
position and orientation errors can be reduced to acceptable levels using the methods

enumerated above. Figure 3 shows the localization performance in one experiment, in
which the initial position error was set to 2.24m. We see that, after running for around
17 meters and having performed 16 opportunistic calibrations, the position error was
gradually reduced to ~1m.

4 Ultrasound-based Localization

In parallel with the vision-based localization capabilities described above, we have
been developing an alternative/complementary localization system based on
ultrasound sensors [9]. Advantage is taken from the fact that the goalkeeper is near the
goal, being easy to obtain an absolute position in the field using visual information.
The goalkeeper has one ultrasound emitter that transmits a pulse in a periodic way.
The other robots have several ultrasound receivers that cover all the 360º around, and
they reply a certain time after receiving the pulse from the goalkeeper. Each robot
uses a different reply time in order to implement a time multiplexing of the answers.
The goalkeeper knows the reply times of each robot, and in this way it can measure
the propagation time of the sound to each robot and from this calculate the distance of
each robot. The goalkeeper also has two ultrasonic sensors in order to measure the
angle of the signal received from each robot. With these two values, it computes the x,
y coordinates of the robots in the field.

The ultrasound signals are processed using the DSP from Texas Instruments 2812.
An initial proof-of-concept prototype was developed using simple algorithms. We use
chirps as the transmitted signal and matched filters to detect the pulses. This way we
managed to solve some of the problems related to multipath propagation and it is also
possible to share the acoustic channel using different chirp signals for each robot. The
first field experiments showed that the system works in real conditions measuring the
coordinates of the robots with good accuracy. The system has full room to improve
the accuracy of the measures by only changing the signal processing algorithms.

5 Monitoring framework for multi-process/multi-agent systems

Cambada robots run several processes and at the same time they interact with each
other. They operate autonomously, taking many decisions per second based on sen-
sory information that changes dynamically and on shared information that is also sub-
ject to frequent changes. It is very hard to follow the robot’s reasoning based only on
the external observation of its behavior. To aid this tuning and debugging process, a
framework was developed to allow the visualization of the robots reasoning and syn-
chronize it with the observed robot’s behavior.

Several constraints must be considered. The robot is executing several processes
and in certain situations we should tune the behavior of the team as a whole instead of
tuning individual robots. The framework is prepared to provide high-level information
to the developer, useful for online observation, individual and team behavior tuning.

During execution, robots may send information to a socket or to a local logfile. The
following debug data is attached to every item of information:

− Timestamp: Used to timeline the sequence and to synchronize information
from several sources;

− Category: A tree of categories may be defined to better organize and visualize
information. A certain tree or subtree of categories can be hidden/displayed;

− Level of detail: Useful to truncate the visualization at a certain level.
Several types of records are allowed, like text, bookmarks, video images, etc. To

synchronize logfiles from different robots two options are available: Use of the regular
clock of the PC with the inclusion of a NTP server in the team’s base station PC and
NTP clients in the robots or the use of the RTAI distributed clock available from the
RTAI layer in Linux.

For file processing and reading, several features were implemented:
− Multiple file opening and managing;
− Time based interlace of records from the logfiles; this gives the user the feeling

of one big logfile and allows to navigate the data on a unique time line.
An application is being developed for reading and analyzing logfiles.

References

1. Almeida, L., F. Santos, T. Facchinetti, P. Pedreira, V. Silva and L. Seabra Lopes (2004)
Coordinating Distributed Autonomous Agents with a Real-Time Database: The CAM-
BADA Project, Computer and Information Sciences -- ISCIS 2004: 19th International
Symposium, Proceedings, Aykanat, Cevdet; Dayar, Tugrul; Korpeoglu, Ibrahim (Eds.),
Lecture Notes in Computer Science, Vol. 3280, p. 876-886.

2. Almeida, L., J.L. Azevedo, P. Bartolomeu, E. Brito, M.B. Cunha, J.P. Figueiredo, P. Fon-
seca, C. Lima, R. Marau, N. Lau, P. Pedreiras, A. Pereira, A. Pinho, F. Santos, L. Seabra
Lopes, J. Vieira (2004) CAMBADA: Team Description Paper, RoboCup Symposium:
Papers and Team Description Papers [CD].

3. Almeida, L., P. Pedreiras and J.A. Fonseca (2002) "FTT-CAN: Why and How", IEEE
Tran. Industrial Electronics.

4. Bartolomeu, P., L. Seabra Lopes, N. Lau, A. Pinho, L. Almeida (2005) Integração de
Informação na Equipa de Futebol Robótico CAMBADA, Electrónica e Telecomunica-
ções, vol. 4 (4), Universidade de Aveiro, Portugal, p. 467-477.

5. Carter, B., et al. (2002) "Mechanical Design and Modeling of an Omni-directional Ro-
boCup Player", RoboCup-2001, A. Birk, et al (edrs), Springer Verlag.

6. Kopetz, H. (1997) Real-Time Systems Design Principles for Distributed Embedded Appli-
cations, Kluwer.

7. Pedreiras, P., F. Teixeira, N. Ferreira, L. Almeida, A. Pinho, F. Santos (2005) Enhancing
the reactivity of the vision subsystem in autonomous mobile robots using real-time tech-
niques, RoboCup Symposium: Papers and Team Description Papers [CD], to appear in I.
Noda, A. Jacoff, A. Bredenfeld, and Y. Takahashi, editors, RoboCup-2005: Robot Soccer
World Cup IX, LNAI, Springer, 2006.

8. Santos, F., L. Almeida, P. Pedreiras, L. Seabra Lopes, T. Facchinetti (2004) An Adaptive
TDMA Protocol for Soft Real-Time Wireless Communication among, Mobile Autono-
mous Agents, Proc. WACERTS'2004, Int. Workshop on Architecture for Cooperative Em-
bedded Real-Time Systems (in conjunction with RTSS 2004), Lisboa, Portugal.

9. Vieira, J.M.N., S.I. Lopes, C.C. Bastos and P.N. Fonseca (2005) "Sistema de Localização
Mútua para Robots Utilizando Ultra-Sons", JETC05, ISEL, Lisboa, Portugal.

