
Coordinating distributed autonomous agents with
a real-time database: The CAMBADA project1

L. Almeida1, F. Santos2, T. Facchinetti3, P. Pedreiras1, V. Silva4, L. Seabra Lopes1

1 LSE-IEETA/DET, University of Aveiro, Portugal
{lda,pedreiras,lsl}@det.ua.pt

2 DEE-ISEC, Polytechnic Institute of Coimbra, Portugal
fred@mail.isec.pt

3 DIS, University of Pavia, Italy
tullio.facchinetti@unipv.it

4 ESTGA, University of Aveiro, Portugal
vfs@estga.ua.pt

Abstract. Interest on using mobile autonomous agents has been growing,
recently, due to their capacity to cooperate for diverse purposes, from rescue to
demining and security. However, such cooperation requires the exchange of
state data that is time sensitive and thus, applications should be aware of data
temporal coherency. In this paper we describe the architecture of the agents that
constitute the CAMBADA (Cooperative Autonomous Mobile roBots with
Advanced Distributed Architecture) robotic soccer team developed at the
University of Aveiro, Portugal. This architecture is built around a real-time
database that is partially replicated in all team members and contains both local
and remote state variables. The temporal coherency of the data is enforced by an
adequate management system that refreshes each database item transparently at
a rate specified by the application. The application software accesses the state
variables of all agents with local operations, only, delivering both value and
temporal coherency.

1 Introduction

Coordinating several autonomous mobile robotic agents in order to achieve a common
goal is currently a topic of intense research [15,7]. This problem can be found in
many robotic applications, either for military or civil purposes, such as search and
rescue in catastrophic situations, demining or maneuvers in contaminated areas.

The technical problem of building an infrastructure to support the perception
integration for a team of robots and subsequent coordinated action is common to the
above applications. One recent initiative to promote research in this field is RoboCup
[7] where several autonomous robots have to play football together as a team, to beat
the opponent. We believe that researching ways to solve the perception integration
problem in RoboCup is also very relevant to real-world applications.

Currently, the requirements posed on such teams of autonomous robotic agents
have evolved in two directions. On one hand, robots must move faster and with
accurate trajectories to close the gap with the dynamics of the processes they interact

1 This work was partially supported by the Portuguese Government – FCT, POSI/ROBO/
43908/2002 (CAMBADA), and the European Comission – IST-2001-34820 (ARTIST).

with, e.g., a ball can move very fast. On the other hand, robots must interact more in
order to develop coordinated actions more efficiently, e.g., only the robot closer to the
ball should try to get it while other robots should move to appropriate positions. The
former requirement demands for tight closed-loop motion control while the latter
demands for an appropriate communication system that allows building a global
information base to support cooperation. Both cases are subject to time constraints
that must be met for adequate performance.

In this paper we describe the architecture of the robotic agents that constitute the
CAMBADA middle-size robotic soccer team of the University of Aveiro, Portugal,
which is well suited to support the requirements expressed above. The hardware
architecture follows the biomorphic paradigm while the software architecture is based
on a real-time database, i.e., a structure containing the current values of relevant local
state variables together with local images of (remote) state variables of other
cooperating agents. The temporal coherency, i.e., degree of timeliness, of the data is
enforced by an adequate management system that refreshes each database item at a
rate specified by the application.

This architecture is innovative in what concerns the mix of using replicated
databases together with temporal coherency information and a management system
that uses real-time communication techniques to schedule the traffic and enforce
timely updates of the database items, dynamically adapting to the conditions of the
communication channel. This paper is structured as follows: The following section
discusses the generic computing and communications architecture of CAMBADA.
Section 3 describes the high-level coordination system, focusing on the real-time
database (RTDB). Section 4 describes the communication protocol among agents.
Section 5 describes the communication requirements of the current implementation
and section 6 concludes the paper.

2 Computing and communications architecture

The computing architecture of the robotic agents follows the biomorphic paradigm
[11], being centered on a main processing unit (the brain) that is responsible for
higher-level behaviors coordination. This main processing unit handles external
communication with other agents and has high bandwidth sensors, typically vision,
directly attached to it. Finally, this unit receives low bandwidth sensing information
and sends actuating commands to control the robot attitude by means of a distributed
low-level sensing/actuating system (the nervous system). This biomorphic architecture
is depicted in Fig. 1.

The main processing unit is currently implemented on a laptop that delivers
sufficient computing power while offering standard interfaces to connect the other
systems, namely USB. The wireless interface is either built-in or added as a PCMCIA
card. The laptop runs the Linux operating system over the RTAI (Real-Time
Applications Interface [12]) kernel, which provides timeliness support, namely for
time-stamping, periodic transmissions and task temporal synchronization. This
approach follows a similar paradigm as the Timely Computing Base proposed in [13].

The agents that constitute the team communicate with each other by means of an
IEEE 802.11b wireless network as depicted in Fig. 2. The communication is
managed, i.e., using a base station, and it is constrained to using a single channel,

shared by both teams in each game. In order to improve the timeliness of the
communications, our team uses a further transmission control protocol that minimizes
collisions of transmissions within the team. An important feature is that the
communication follows the producer-consumer co-operation model, according to
which each robot regularly broadcasts, i.e. produces, its own data while the remaining
ones receive, i.e. consume, such data and update their local structures. Beyond the
robotic agents, there is also a coaching and monitoring station connected to the team
that allows following the evolution of the robots status on-line and issuing high level
team coordination commands.

Fig.1. The biomorphic architecture of the CAMBADA robotic agents

The low-level sensing/actuating system follows the fine-grain distributed model [8]
where most of the elementary functions, e.g. basic reactive behaviors and closed-loop
control of complex actuators, are encapsulated in small microcontroller-based nodes,
interconnected by means of a network. This architecture, which is typical for example
in the automotive industry, favors important properties such as scalability, to allow
the future addition of nodes with new functionalities, composability, to allow building
a complex system by putting together well defined subsystems, and dependability, by
using nodes to ease the definition of error-containment regions.

Fig. 2. Global team communications architecture, with the robotic agents and a monitoring
station interconnected by means of an IEEE 802.11 wireless network

This architecture relies strongly on the network, which must support real-time
communication. For this purpose, Controller Area Network (CAN) [2] has been
chosen, which is a real-time fieldbus typical in distributed embedded systems. This
network is complemented with a higher-level transmission control protocol to
enhance its real-time performance, composability and fault-tolerance, namely the
FTT-CAN protocol (Flexible Time-Triggered communication over CAN) [1]. The use

Main
Processor

External
communication
(IEEE 802.11b)

High
bandwidth

sensors

Distributed
sensing/actuating

system

Coordination
layer

Low-level
control layer

R1

R3

R2

IEEE 802.11 Network

of FTT-CAN has the advantage of combining time-triggered communication, which is
adequate for closed-loop control functions, with operational flexibility supporting on-
line reconfiguration and thus higher maintainability and capacity to cope with
evolving requirements.

Currently, the interconnection between CAN and the laptop is carried out by means
of a gateway, either through a serial port operating at 115Kbaud or through a serial-
to-USB adapter. The nodes of the system are based on an 8-bit microcontroller from
Microchip, namely the PIC 18F485 [9].

3 RTBD - The real-time database

Similarly to other teams [4,6,14], our team software architecture emphasizes
cooperative sensing as a key capability to support the behavioral and decision-making
processes in the robotic players. A common technique to achieve cooperative sensing
is by means of a blackboard [5], which is a database where each agent publishes the
information that is generated internally and that maybe requested by others. However,
typical implementations of this technique seldom account for the temporal validity
(coherence) of the contained information with adequate accuracy, since the timing
information delivered by general-purpose operating systems such as Linux is rather
coarse. This is a problem when robots move fast (e.g. above 1m/s) because their state
information degrades faster, too, and temporal validity of state data becomes of the
same order of magnitude, or lower, than the operating system timing accuracy.

Another problem of typical implementations is that they are based on the client-
server model and thus, when a robot needs a datum, it has to communicate with the
server holding the blackboard, introducing an undesirable delay. To avoid this delay,
we use two features: firstly, the dissemination of the local state data is carried out
using broadcasts (Fig. 3), according to the producer-consumer cooperation model, as
referred in the previous section; secondly, we replicate the blackboard according to
the distributed shared memory model [10]. In this model, each node has local access
to all the process state variables that it requires. Those variables that are remote have
a local image that is updated automatically by an autonomous communication system.

Fig. 3. Each agent broadcasts periodically its subset of state data that might be required by
other agents

We call this replicated blackboard the Real-time Data Base (RTDB), similarly to
the concept presented in [8], which holds the state data of each agent together with
local images of the relevant state data of the other team members. A specialized

communication system triggers the required transactions at an adequate rate to
guarantee the freshness of the data. This is carried out under control of the RTAI
kernel, guaranteeing that the transmission instants are respected within small
tolerances, contributing to achieve better close-loop control of the robots.

Generally, the information within the RTDB holds the absolute positions and
postures of all players, as well as the position of the ball, goal areas and corners in
global coordinates. This approach allows a robot to easily use the other robots sensing
capabilities to complement its own. For example, if a robot temporarily loses track of
the ball, it might use the position of the ball as detected by another robot.

3.1 RTDB implementation

The RTDB is implemented over a block of shared memory, between Linux and RTAI.
It contains two main areas: a private area for local information, only, i.e., which is not
to be broadcast to other robots; and a shared area with global information. The shared
area is further divided into a number of areas, one corresponding to each agent in the
team. One of the areas is written by the agent itself and broadcast to the others while
the remaining areas are used to store the information received from the other agents.

The allocation of shared memory is carried out by means of a specific function call,
DB_init(), called once by every Linux process that needs access to the RTDB.
The actual allocation is executed within RTAI by the first such call, only. Subsequent
calls just return the shared memory block handler and increment a process count.
Conversely, the memory space used by the RTDB is freed using the function call
DB_free() that decreases the process count and, when zero, releases the shared
memory block.

The RTDB is accessed concurrently from Linux processes that capture and process
images and implement complex behaviors, and from RTAI tasks that manage the
communication both with the lower-level control layer (through the CAN gateway)
and with the other agents (through the wireless interface). The Linux processes access
the RTDB with local non-blocking function calls, DB_put() and DB_get() that
allow writing and reading records, respectively (Fig. 4 shows the prototypes of the
RTDB related function calls). DB_get() further requires the specification of the
agent from which the item to be read belongs to, in order to identify the respective
area in the database.

int DB_init (void);
void DB_free (void);
void DB_put (int _id, void *_value);
int DB_get (int _agent, int _id, void *_value).

Fig. 4. The RTDB related function calls

3.2 Synchronization of concurrent accesses

A specific synchronization mechanism allows enforcing data consistency during
concurrent accesses among Linux processes and between these and RTAI tasks. This
mechanism uses two features. Firstly, the DB_put() primitive sends all RTDB
update requests to RTAI where they are handled by only one real-time task,
DB_writer, which actually writes in the database. This same task also handles the

RTDB updates arriving from the lower-level control layer. This ensures atomic access
during local write operations. Notice that remote write operations with the
information received from other agents are carried out by another real-time task,
DB_IO, which is not concurrent with DB_writer because they write in different areas.

Secondly, there is a control field in each record that allows knowing whether an
item was updated since it was last read. This field is set by any write operation on that
item and reset within DB_get() just before reading the information. DB_get()
also checks the status of that control field after retrieving the data and thus, if the field
changes status in between, then there was a write operation that corrupted the read
operation and this one is repeated. This ensures consistent data retrieval.

The software architecture of the main processing unit that holds the RTDB is
illustrated in Fig. 5. The actual wireless communication is handled within Linux by a
high-priority task, with SCHED_FIFO scheduler, due to unavailability of RTAI
device drivers for certain wireless cards.

Fig. 5. The software architecture of the main processing unit, highlighting the RTDB, the Linux
processes and the related real-time tasks

3.3 Internal structure of the RTDB

The RTDB is organized in a set of records plus a set of related data blocks. The
records contain the fields referred in Fig. 6, i.e., an identifier, a pointer to the
respective data block, the size of that block, a timestamp of the last update instant, the
update period and a control field for synchronization purposes as referred previously.

typedef struct _TRec {
 int id; // entity identification
 unsigned long int offset;
 unsigned long int size;
 unsigned long int time;
 int period;
 unsigned char write_control;
} Trec;

Fig. 6. The fields of the generic RTDB record

For the sake of regularity, all the records are stored sequentially in the initial part of
the RTDB, followed by all the respective data blocks (Fig. 7).

Fig. 7. The internal organization of the RTDB in records and associated data blocks

4 Communication among agents

As referred in section 2, agents communicate using an IEEE 802.11 network, sharing
a single channel with the opposing team and using managed communication (through
the access point). This raises several difficulties because the access to the channel
cannot be controlled [3] and the available bandwidth is roughly divided by 2.

Therefore, the only alternative left for each team is to adapt to the current channel
conditions and reduce access collisions among team members. This is achieved using
an adaptive TDMA transmission control, with a predefined round period called team
update period (Ttup) that sets the responsiveness of the global communication.
Within such round, there is one single slot allocated to each team member so that all
slots in the round are separated as much as possible.

The transmissions generated by each agent are scheduled within DB_IO, according
to the production periods specified in the RTDB records. Currently a rate-monotonic
scheduler is used. When the respective TDMA slot comes, all currently scheduled
transmissions are piggybacked on one single 802.11 frame and sent to the channel.
The required synchronization is based on the reception of the frames sent by the other
robots during Ttup. With the reception instants of those frames, their lengths and the
target inter-slot period Txwin it is possible to generate the next transmission instant. If
no frame is received during a round, then the next frame is sent Ttup after the
previous one. If these delays affect all TDMA frames in a round, then the whole
round is delayed from then on, thus its adaptive nature. Fig. 8 depicts one TDMA
round indicating the slots allocated to each robot.

Fig. 8. TDMA transmission control of wireless communication within the team

Txwin N1 Txwin N2 Txwin N3 Txwin N4

Ttup

M1,i M2,j M3,k M4,l M1,i+1

Carrying out the bandwidth allocation in this way contributes to increase the
protocol resilience since the messages are transmitted as far apart as possible and thus
being more tolerant to deviations either caused by temporary loss of communication
or by interference from other traffic.

5 Communication requirements

In this section we present the effective communication requirements of the current
CAMBADA robots implementation, both concerning the inter-robots communication
and the intra-robots communication with the distributed sensing and actuation system.

5.1 Inter-robots communication requirements

The inter-robots communication is directly deduced from the contents of the RTDB
shared areas. Particularly, each robot has to transmit its own area which contents are
show in Table 1. When all items are ready for transmission simultaneously, the total
data to be transmitted amounts to 1420 bytes. At 11Mbps, this takes slightly less than
1.2ms, a time that is doubled because of the managed communication (requiring re-
transmission by the access point). Therefore, the total time per-transaction is upper-
bounded to 2.4ms.

Moreover, a value of 100ms for Ttup, the TDMA round period, seems adequate for
refreshing the remote images of the state variables, since these are not used within
high-speed closed-loop control. This value also establishes a good compromise in
terms of used bandwidth. In fact, considering 4 team members, yields Txwin=25ms
and thus, the bandwidth taken to broadcast the robots state data is less than 10%.

Table 1. State data of each robot, to be shared with the remaining team members

Object Quantity Size
(Bytes) Short description

Robot 4 157 Rotation, speed, position (absolute and relative)
Opponent 4 157 Rotation, speed, position (absolute and relative)
Self 1 20 Identifier, role and behavior, displacement since

last odometry reset and flags indicating objects
locally identified.

Team 1 2 Current field side
Ball 1 144 Speed and position (absolute and relative)

5.2 Communication requirements of the lower-level control layer

The lower-level control layer is formed by the distributed sensing and actuating
system interconnected to the main processing unit. This distributed system includes a
set of nodes that are depicted in Fig. 9. The communication requirements at this level
are shown in Table 2. As referred in section 2, this distributed system is based on a
CAN network complemented with the FTT-CAN protocol. The former operates at
250Kbps and, according to this transmission rate and to the requirements in Table 2,
the FTT-CAN protocol is configured with an Elementary Cycle (EC) 10ms long and a
maximum Synchronous Window (LSW) of 28% the duration of the EC.

Fig. 9. The hardware architecture of the distributed sensing/actuating system

Moreover, an efficient use of the FTT-CAN protocol further requires the separation
of the message streams in two sets, the synchronous set (SS) and the asynchronous set
(AS). In this case, the SS is composed by messages {M1, M3.1-M3.3, M4.1, M4.2,
M6.1, M6.2} while messages {M2, M5.1, M5.2, M7} belong to the AS.
Basically, M6 conveys movement vectors from the laptop to the node Pic-base. This
node computes the individual set points for each motor (holonomic motion) and sends
them to the motors via M1. These two messages, M6 and M1, support closed loop
controlled motion of visually tracked items, e.g. the ball. Each motor sends its
odometry readings to the Pic_Odom node, using M3. Finally, Pic_Odom estimates the
robot position and reports it to the laptop using M4. M5 allows setting or resetting the
robot position. Finally, M7 is used to actuate the ball kicker while M2 alerts the
system that batteries charge is running low.

Table 2. Communication requirements of the lower-level control layer

ID Source Target Type
Period/mit

(ms)
Size
(B)

Short description

M1 Pic_base Motor[1:3] Periodic 30 6 Aggregate motor set points
M2 Pic_base Laptop Sporadic 1000 2 Battery status

M3.1-M3.3 Motor[1:3] Pic_odom Periodic 10 3*3 Wheel encoder value
M4.1-M4.2 Pic_odom Laptop Periodic 50 7+4 Robot position (position + rotation)
M5.1-M5.2 Laptop Pic_odom Sporadic 500 7+4 Set/reset robot position (position + rotation)
M6.1-M6.2 Laptop Pic_base Periodic 30 7+4 Movement vector (rot+translational velocity)

M7 Laptop Pic_base Sporadic 1000 1 Kicker actuation

The analysis presented in [1] allows verifying that all time constraints are met, i.e.,

all the transmissions occur within the respective periods. The traffic scheduling policy
followed by the FTT-Master is also rate-monotonic.

6 Conclusion

Cooperating robots is a field currently generating large interest in the research
community. RoboCup is one example of an initiative developed to foster research in
that area.

This paper described the computing and communication architecture of the
CAMBADA middle-size robotic soccer team being developed at the University of
Aveiro. This team has just participated in a few preliminary tournaments, with
encouraging results, and it is expected to do participate at the next RoboCup event, in
Lisbon, June/July of 2004. One of its distinguishing features is the smooth and

USB

Attitude
controller

Kick

FTT
Master

Odom.
manager

Gateway

Global vision webcam

Mot 1 Odom
Mot 2 Odom

Mot 3 Odom 3

Local vision webcam

effective motion control at relatively high speeds, e.g. when tracking and following
the ball. This is achieved by means of a computing and communication architecture
that includes real-time concerns from the bottom layers up to the coordination. In
particular, the robots coordination is based on a replicated database, i.e., the Real-
Time Data Base (RTDB) that includes local state variables together with images of
remote ones. These images are updated transparently to the application software by
means of an adequate real-time management system. Moreover, the RTDB is
accessible to the application using a set of non-blocking primitives, thus yielding a
fast data access.

The paper finishes with a brief analysis of the communication requirements of the
current robots implementation.

References

1. Almeida, L., Pedreiras, P., Fonseca, J., “The FTT-CAN protocol: Why and
How”. IEEE Transactions on Industrial Electronics, 49(6): 1189-1201.
December 2002.

2. CAN Specification - Version 2.0. Robert Bosch GmbH. Stuttgard, 1991.
3. Decotignie, J.-D., et al., “Architecture for the Interconnection of Wireless

and Wireline Fieldbuses”, FeT'01 - IFAC Conf. on Fieldbus Technologies,
Nancy. November, 2001.

4. Dietl, M., J.-S. Gutmann and B. Nebel, “Cooperative Sensing in Dynamic
Environments”, Proc. IROS 2001.

5. Erman, L.D., F. Hayes-Roth, V.R. Lesser, D.R. Reddy, “The HERSAY-II
Speech Understanding System: Integrating Knowledge to Resolve
Uncertainty”, Computing Surveys, 12 (2), 1980.

6. Jamzad, M., et al., “Basic Requirements for a Teamwork in Middle Size
RoboCup”, Sharif-ARVAND team description. June 2001.

7. Kitano, K., M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, “RoboCup: The
Robot World Cup Initiative”, Proc. of IJCAI-95 Workshop on Entertainment
and AI/Alife, Montreal. 1995.

8. Kopetz, H., “Real-Time Systems Design Principles for Distributed
Embedded Applications”, Kluwer, 1997.

9. Microchip PIC18F458 datasheet, available at
http://ww1.microchip.com/downloads/en/DeviceDoc/41159c.pdf.

10. Milutinovic, V. and Stenström, P. “Special Issue on Distributed Shared
Memory Models”, Proceedings of the IEEE, 87(3), March 1999.

11. Proc. of the “NASA Workshop on Biomorphic Robotics”, Jet Propulsion
Laboratory, California Institute of Technology. USA. August 14 - 16, 2000.

12. RTAI for Linux, available at http://www.aero.polimi.it/~rtai/
13. Veríssimo, P., Casimiro, A., “The Timely Computing Base Model and

Architecture”, IEEE Transactions on Computers, 51(8), August 2002.
14. Weigel, T. et al., “CS Freiburg: Sophisticated Skills and Effective

Cooperation”, Proc. European Control Conference (ECC-01), Porto. 2001.
15. Weiss, G. “Multiagent systems. A Modern Approach to Distributed Artificial

Intelligence” MIT Press, 2000.

