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1. Introduction

The CAMBADA robots were designed and completelyltom-house. Each robot is
built upon a circular aluminum chassis (with royg#85 mm diameter), which supports
three independent motors (allowing for omnidirecéib motion), an electromagnetic
kicking device and three, 4 cells LiPo batterieke Temaining parts of the robot are
placed in three higher layers, namely: the firgetaupon the chassis is used to place all
the electronic modules such as motor controllens; gecond layer contains the PC
(currently a 12" notebook based on an Intel Core2processor); finally on the top of
the robots stands an omnidirectional vision sysbased on a hyperbolic mirror (AIS
Fraunhofer-Gesellschatft).

The mechanical structure of the robot is highly madand was designed to facilitate
maintenance. It is mainly composed of two tiers:tlig "mechanical” section that

includes the major mechanical parts attached taltnminum plate (e.g. motors, kicker,

batteries); 2) the "electronic" section that in@sdcontrol modules, the PC and the
vision system. These two sections can be easilgratgal from each other, allowing an
easy access both to the mechanical component®dhd &lectronic modules.

2. General Architecture of the Robots

The general architecture of the CAMBADA robots tmeen described in [1][2][3].
Basically, the robots architecture is centered anaén processing unit (a PC running
the Linux operating system) that is responsible tbe higher-level behavior
coordination, i.e. the coordination layer. This magbrocessing processes visual
information gathered from the vision system, exesutigh-level control functions and
handles external communication with the other reb®his unit also receives sensing
information and sends actuating commands to cotiteofobot behaviour by means of a
distributed low level sensing/actuating system. Taemunication among team robots
uses an adaptive TDMA transmission control prot¢shlon top of IEEE 802.11b, that
reduces the probability of transmission collisitve$ween team mates thus reducing the
communication latency.

The low-level sensing/actuation system (Figure sljmplemented through a set of
microcontrollers interconnected by means of a CANvork (Controller Area Network
(CAN) [6]). The main blocks of the low-level sengfactuation system are: motion
control, odometry computation, compass, kickingtadrand system monitoring. The
motion control block is composed of three indepemdaotor control boards each of
them receiving a velocity setpoint from the higlideholonomic motion controller. The
odometry block combines the encoder readings from 3 motors and provides
coherent robot displacement information that isiqagcally sent to the high level
coordination layer. The compass block reads thepass sensor and sends periodically
to the high-level the corresponding read value. Kicking control block includes the
control of an electromagnetic kicker and of a balhdler to dribble the ball. Finally, the



system monitor, which is in fact a distributed ftio, monitors the robot batteries as
well as the state of all nodes in the low-leveklay
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Figure 1. The CAMBADA low-level hardware architecture.

The low-level control layer connects to the cooation layer through a gateway (see
Figure 2 for the electrical drawing of this modubehich filters interactions within both
layers, passing through the information that isvaht across the layers, only.

3. Low-level hardware description

The low-level layer nodes are interconnected wi@AdN network operating at a bit rate
of 250Kbps. A gateway interconnects the CAN netwiorthe PC at the high-level layer
either through a serial port or a USB port, opegatat 115 Kbps in any case. All
modules (except for the motor control modules) laased on the same underlying
hardware, e.g. a PIC18Fxx8 Microchip [4] microcolier (@40MHz, i.e., 10 MIPS)
which, along with a set of useful peripherals, sastimers, PWM generators, analog to
digital converter and serial communications, atgdegrates a CAN controller. The basic
structure of every module includes the CAN portctmnect to the network and also
includes a 115 Kbps RS232 serial port, which isfuldeoth to program the module
firmware (through a boot-loader) and for debuggngposes.

One important characteristic of the CAMBADA harderadesign is the galvanic
decoupling between the "logidilocks (e.g. microcontrollers, PC, cameras) and the
"power" blocks (e.g. motors, kicker) carried out throughospuplers and isolation
amplifiers. Along with improved reliability of thehole system it prevents serious
damages in expensive equipment (such as the ndtelmodhe high-level layer)
whenever any electric problem occurs in the "powddck. The drawback of this
solution is the need of an extra battery for tlugig" part of the system. Thus, the low-
level hardware modules are powered through 3,14 5600 mAh Lipo batteries.

The following sections describe in more detail eacbde of the low-level
sensing/actuation system.

3.1. Motion control

The robot holonomic motion is obtained combining #peed of 3 DC motors (Maxon
24V-150W), each with its own speed controller. Eathhese controllers is a distinct
module of the whole distributed architecture impdetng a Pl closed loop speed
control. It takes as inputs the motor shaft disphaent, obtained through a quadrature
500 P/R incremental optical shaft encoder coupbethé main axis of the motor, and



the speed setpoint. The hardware of these modaleswo main blocks: 1) the "logic"
block (based on a Microchip dsPIC) that interfatesthe rest of the system and
generates the required control signals, and 2)ygbeer" block which is essentially an
NMOS H-Bridge, with two high-side drivers, to adtyalrive the motor. The output of
thelogic block is a set of two 20 KHz PWM signals implemegta modified lock anti-
phase drive. In this drive mode the motor is eedjionly during the on-time, in
contrast with the standard lock anti-phase wheee rtfotor is energized in reverse
direction during the off-time. That is, when the torois stopped (duty-cycle of the
PWM signals is 50%) the current is zero. This impdatation leads to a significant
gain in battery autonomy, whenever the motor is notdting at its maximum speed.
Figure 3 and Figure 4 present the complete elettdiawing for this module.”

The odometry function of the robot is accomplishierbugh the combination of the
readings of each one of the 3 encoders to geneaterent robot displacement
information QXx, Ay, AB). The reading of each encoder is naturally alled¢ab each
motor control module, using the same readings asetlused by the speed feedback
control. The combination of the readings is carred in a process running on the
laptop PC which receives, via CAN messages, thedarcreadings from the motor
control modules.

3.2. Kicking control

The kicking system, which has been fully developgdhe CAMBADA team, is the so-
called electromagnetic kicker. The main elemenit &f an electromechanical solenoid
which consists of a coil wound around a movable icore producing a magnetic field
when an electric current passes through it. Thenetagfield causes the iron core to
move towards the ball, thus kicking it. Controllittge magnetic field provides control
over the kicking power, and that represents a wenyenient way to modulate the
kicking action. The energy needed to drive thersatkis stored in a capacitor. To get a
strong kick a large magnetic field has to be ckkathich implies the usage of
reasonably high currents and/or voltages and dlBrge capacitors.

The kicking system is based on a Microchip PIC1&-45 follows the same basic

structure already presented for the motor controlteat is, galvanic decoupling

between the "logic" block and the "power" block.eTtwo main components of the
"power" block are: 1) a DC to DC converter circinat stores energy in a capacitor; 2)
a solid-state switch that controls the dischargehef capacitor on the solenoid thus
triggering the kicker.

The DC to DC converter is a typical switch-mode ater based on a boost
configuration that converts 24V DC to 90V DC. Imgeal terms, it works in two steps:
1) a DC voltage is set across an inductor durimqyeadefined period of time which
causes the inductor to store energy magnetica)lyh@ voltage is switched off which
causes the stored energy to be transferred toapacitor. Although very simple, this
circuit is very efficient, resulting in a ratherwocapacitor recharge time. The
implemented circuit works at 18KHz and, in pradtieams, the recharge (from 24V to
90V) of a 8000QF capacitor takes roughly 3s. The capacitor chgrghocess is carried
out in a closed-loop way, being the voltage actbescapacitor continuously monitored
by the microcontroller. The output of the microgotier is a 18 KHz / 35% PWM
signal which has been found experimentally as agdtim order to minimize the
charging time. This is crucial since an inefficiaattarging process can dramatically
decrease the running time of the battery.



The second component of the above referred "polbleck is a solid-state switch based
on NMOS transistors, whose specifications (150V40A in our design) depend
essentially on the capacitor voltage and curreatvdrby the solenoid.

The kicking system also includes an IR barrier Whecused to detect the ball when it is
in the kicking position, thus avoiding false trigige.

Another feature implemented in this module is ativacball-handler system whose
purpose is to dribble the ball throughout the géield.

The functions related to the kicking system arecated within the kicker module,
without need for additional modules. The kickerenatcts directly with the high-level
layer through the gateway via CAN messages. Theptaim electrical drawing of the
kicking controller is presented in Figure 5, Figérand Figure 7.

3.3. System monitoring

This functionality has two main purposes: measuatebies voltage and monitor
modules run-time status. The latter requires thrtion to be present in all modules,
tracking reset situations, namely power-up resatmwreset, brown-out reset (caused by
undervoltage spikes) and watchdog reset, as welingsvering td’'m alive requests
issued by the high-level control layer. Batterytagke monitoring is implemented in the
same module as the kicker, since it already indudpecific voltage monitoring
hardware. The battery monitoring function continslgumeasures the voltage of the
three LiPo batteries used in the robot (two for 'th@wer" blocks of motor controllers
and kicker, plus one for the "logiblocks).

The information gathered by the system monitoringction, in all nodes, is
periodically sent to the high-level layer for remahonitoring purposes.

3.4. Compass module

The compass module (see Figure 8 for the electricaking) is based on a Microchip
PIC18F258 microcontroller and on the Hitachi HM558,2-axis digital integrated
magnetic field sensor. The connection between tleogontroller and the compass
sensor is accomplished through a synchronous spr@bcol which enables full
operation of the sensor.

This module reads periodically the compass sensisands the read data to the high-
level modules via CAN messages.



4. Electrical drawings

4.1. Gateway
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Figure 2. Gateway module.



4.2. Motor control
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Figure 3. Motor control module (part 1).
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Figure 4. Motor control module (part 2).



4.3. Kicking control
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Figure 5. Kicking control module (part 1).
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Figure 6. Kicking control module (part 2).
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Figure 7. Kicking control module (part 3).
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4.4. Compass module
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Figure 8. Compass module.
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