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Abstract. The CAMBADA middle-size robotic soccer team is described in this 
paper for the purpose of qualification to RoboCup’2007. The robots have been 
developed from scratch in the last four years and, unlike other approaches, 
using home-made mechanical parts and basic electronic modules. Previous 
experience of some elements of the team in the RoboCup Simulation League 
has been highly relevant particularly in the design of the high-level 
coordination and control framework. 

1 Introduction 

CAMBADA 1 is the RoboCup middle-size league soccer team of the University of 
Aveiro, Portugal. This project started officially in October 2003 and, since then, the 
team has participated in three RoboCup competitions, namely, RoboCup’2004, 
RoboCup’2006, DutchOpen’ 2006, and in the last three editions of the Portuguese 
Robotics Festival (Robotica2004, Robotica2005 and Robotica2006). 

This paper describes the current development stage of the team and is organized as 
follows: Section 2 briefly presents the robot platform. Section 3 describes the general 
architecture of the robots focusing both on low-level control hardware aspects and on 
the general software architecture. Section 4 presents the current version of the vision 
system. Section 5 briefly describes the high-level coordination and control 
framework. Finally, section 6 concludes the paper. 

2 Robot Platform 

The CAMBADA robots were designed and completely built in-house. Each robot 
is built upon a circular aluminum chassis (with roughly 485 mm diameter), which 
supports three independent motors (allowing for omnidirectional motion), an 
electromagnetic kicking device and three NiMH batteries. The remaining parts of the 
robot are placed in three higher layers, namely: the first layer upon the chassis is used 
to place all the electronic modules such as motor controllers; the second layer 

                                                           
1 CAMBADA is an acronym of Cooperative Autonomous Mobile roBots with Advanced 

Distributed Architecture. 



contains the PC (currently a 12" notebook based on an Intel Core2Duo processor); 
finally on the top of the robots stands an omnidirectional vision system consisting of a 
standard low cost camera and an hyperbolic mirror (AIS Fraunhofer-Gesellschaft). 

The mechanical structure of the robot is highly modular and was designed to 
facilitate maintenance. It is mainly composed of two tiers: 1) the mechanical section 
that includes the major mechanical parts attached to the aluminum plate (e.g. motors, 
kicker, batteries); 2) the electronic section that includes control modules, the PC and 
the vision system. These two sections can be easily separated from each other, 
allowing an easy access both to the mechanical components and to the electronic 
modules.  

 

  
 

Fig. 1. The CAMBADA robot 

3 General Architecture of the Robots 

The general architecture of the CAMBADA robots has been described in [1], [2]. 
Basically, the robots architecture is centered on a main processing unit that is 
responsible for the higher-level behavior coordination, i.e. the coordination layer. 
This main processing unit (a PC) processes visual information gathered from the 
vision system, executes high-level control functions and handles external 
communication with the other robots. This unit also receives sensing information and 
sends actuating commands to control the robot attitude by means of a distributed low-
level sensing/actuating system. The PC runs the Linux operating system over the 
RTAI (Real-Time Applications Interface [6]) kernel, which provides time-related 
services, namely periodic activation of processes, time-stamping and temporal 
synchronization. The communication among team robots uses an adaptive TDMA 
transmission control protocol [3], on top of IEEE 802.11b, that reduces the 
probability of transmission collisions between team mates thus reducing the 
communication latency. 

The low-level sensing/actuation system (Fig. 2) is implemented through a set of 
microcontrollers interconnected by means of a network. For this purpose, Controller 
Area Network (CAN) [5], a real-time fieldbus typical in distributed embedded 
systems, has been chosen. This network is complemented with a higher-level 
transmission control protocol to enhance its real-time performance, composability and 



fault-tolerance, namely the FTT-CAN protocol (Flexible Time-Triggered 
communication over CAN) [4],[8]. The low-level sensing/actuation system executes 
four main functions, namely, Motion control, Odometry, Kicking and System 
monitoring. The Motion control function provides holonomic motion using 3 DC 
motors. The Odometry function combines the encoder readings from the 3 motors and 
provides coherent robot displacement information that is then sent to the coordination 
layer. The Kick function includes the control of an electromagnetic kicker and of a 
ball handler to dribble the ball. Finally, the System monitor function monitors the 
robot batteries as well as the state of all nodes in the low-level layer. 
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Fig. 2. The CAMBADA hardware architecture. 

The low-level control layer connects to the coordination layer through a gateway, 
which filters interactions within both layers, passing through the information that is 
relevant across the layers, only. 

3.1 Hardware 

The low-level layer has a set of nodes, built around a common module, using 
specialized interfacing to the robot I/O devices. These nodes are interconnected with a 
CAN network operating at a bit rate of 250Kbps. A gateway interconnects the CAN 
network to the PC at the high-level layer either through a serial port or a USB port, 
operating at 115Kbaud in any case.  

All modules are based on the same underlying hardware, e.g. a PIC18Fxx8 
Microchip [7] microcontroller (@40MHz, i.e., 10 MIPS) which, along with a set of 
useful peripherals, such as timers, PWM generators, analog to digital converter and 
serial communications, also integrates a CAN controller. The basic structure of every 
module includes the CAN port to connect to the network and also includes a 115 
Kbps RS232 serial port, which is useful both to program the module firmware and for 
debugging purposes.  

One important characteristic of the CAMBADA hardware design is the galvanic 
decoupling between the logic blocks and the power blocks carried out through opto-
couplers and/or isolation amplifiers. Along with improved reliability of the whole 
system it prevents serious damages in expensive equipment (such as the notebook in 
the high-level layer) whenever any electric problem occurs in the power block. The 



drawback of this solution is the need of an extra battery for the logic part of the 
system. 

The main functions implemented in the low-level layer are described in the 
following. 

Motion control 

The robot holonomic motion is obtained combining the speed of 3 DC motors 
(24V-150W), each with its own speed controller. Each of these controllers is a distinct 
module of the whole distributed architecture implementing a PI closed loop speed 
control. It takes as inputs the motor shaft displacement, obtained through a quadrature 
incremental optical shaft encoder coupled to the motor, and the speed set-point. The 
computation of the three set-points needed to obtain a coherent robot motion is carried 
out by another module called holonomic. It receives the robot velocity vector (speed, 
direction and heading) from the higher-level (through the gateway) and translates it 
into individual set-points that are then sent to each motor controller via CAN 
messages. 

Odometry 

The odometry function of the robot is accomplished through the combination of 4 
basic functions: the reading of the 3 encoders plus their combination to generate 
coherent displacement information (∆x, ∆y, ∆θ). The reading of each encoder is 
naturally allocated to each motor module, using the same readings as those used by 
the speed feedback control. The combination of the readings is carried out in a 
specific module, the odometry node, which receives the encoder readings from the 
motors and sends the results to the gateway via CAN messages. 

Kicking control 

The kicking system is based on an electromagnetic kicker that has been developed 
by the team for these robots. It allows the higher-level coordination functions to 
choose one of two kicking modes: direct shooting or lofted kick. Effective control of 
the kick power is also implemented. The kicking system also includes two IR sensors 
implemented as an IR barrier which is used to detect the ball when it is in the kicking 
position, thus avoiding false triggering; and a short distance IR sensor (less than 50 
cm) which can be used, in addition to visual information, to determine more precisely 
the distance between the front of the robot and the ball. 

Another feature implemented in this module is an active ball-handler system whose 
purpose is to dribble the ball throughout the game field in accordance with the 
RoboCup MSL rules. It is implemented as a quadrature incremental encoder, to 
measure the ball movement thus providing ball rotation feedback control. 

System monitoring 

This functionality has two main purposes: measure batteries voltage and monitor 
modules run-time status. The latter requires this function to be present in all modules, 
tracking reset situations, namely power-up reset, warm reset, brown-out reset (caused 
by undervoltage spikes) and watchdog reset, as well as answering to I’m alive 
requests issued by the high-level layer. Battery voltage monitoring is implemented in 
the same module as the kicker, since it already includes specific voltage monitoring 
hardware. The battery monitoring function measures, in real-time, the voltage of the 



three NiMH batteries used in the robot, namely 2x12V for the power blocks of motor 
controllers and kicker, plus a 9.6V for the logic blocks.  

The information gathered by the system monitoring function, in all nodes, is sent to 
the high-level layer for remote monitoring purposes. 

3.2 Software 

The software system in each robot is distributed among the various computational 
units. High level functions run on the PC, while low level functions run on the 
microcontrollers. A cooperative sensing approach based on a Real-Time Database 
(RTDB) [1], [3], [9] has been adopted. The RTDB is a data structure where the robots 
share their world models. It is updated and replicated in all players in real-time.  

The high-level processing loop starts by integrating perception information 
gathered locally by the robot. This includes information coming from the vision 
system and odometry information coming from the low-level layer, both stored in a 
Local Area of the RTDB. After integration, the world state can be updated in the 
shared area of the RTDB. The next step is to integrate local information with 
information shared by team-mates, which is updated by a process that handles the 
communication with the other robots via an IEEE 802.11b wireless connection. The 
RTDB is then used by another set of processes that define the specific robot behavior 
for each instant, generating commands that are passed down to the low-level control 
layer. 

4 Vision System 

The current version of the vision system is based on a catadioptric configuration 
implemented with a low cost Fire-wire web-camera (BCL 1.2 Unibrain camera with a 
¼'' CCD sensor and a 3.6mm focal distance lens) and a hyperbolic mirror. The camera 
delivers 640x480 YUV images at a rate of 30 frames per second.  

The vision software has been implemented following a modular multi-process 
architecture (Fig. 3).  

 
Fig. 3. Architecture of the vision system. 

When a new frame is ready to be read, the acquisition process is automatically 
triggered and the frame is placed in a shared memory buffer. Another process will 



then analyze the acquired image for color classification, creating a new one with 
"color labels'' (an 8 bit per pixel image). This image is also placed in the shared image 
buffer, which is afterwards analyzed by the object detection processes, generically 
designated by Proc[x] , x={0, 1,... N-1}. The output of the detection processes is 
placed in the real-time database (RTDB) which can be accessed by any other 
processes on the system, such as the world state update. The activation of the different 
image-processing processes is carried out by means of a process manager [9].  

Image analysis in the RoboCup domain is simplified, since objects are color coded. 
This fact is exploited by defining color classes, using a look-up-table (LUT) for fast 
color classification. The table consists of 16777216 entries (24 bits: 8 bits for red, 8 
bits for green and 8 bits for blue), each 8 bits wide, occupying 16 MB in total. The 
classification of a pixel is carried out using its color as an index into the table. The 
color calibration is done in HSV (Hue, Saturation and Value) color space. In the 
current setup the image is acquired in RGB or YUV format and is then converted to 
HSV using an appropriate conversion routine.  

The image processing software uses radial search lines to analyze the color 
information. The regions of the image that have to be excluded from analysis (such as 
the robot itself, the sticks that hold the mirror and the areas outside the mirror) are 
ignored through the use of a previously generated image mask.  

The objects of interest (a ball, two goals, obstacles and the green to white 
transitions) are efficiently detected through algorithms that, using the color 
information collected by the radial search lines, calculate the object position and/or 
their limits in an angular representation (distance and angle). The green/white 
detected transition points, that are at a distance smaller than a predefined value, are 
stored in the RTDB for latter use by the robot self-localization process.  

The relationship between image pixels and real world distances is obtained through 
an analytical method developed by the team (to be published soon) that explores a 
back-propagation ray-tracing approach and the mathematical properties of the mirror 
surface. 

5 High-level coordination and control 

The high-level decision is built around three main modules: sensor fusion, basic 
behaviors and high-level decision and cooperation. The objective of the sensor fusion 
module is to gather the noisy information from the sensors and from other robots and 
update the World State database that will be used by the high-level decision and 
coordination. The basic behaviors module provides the set of primitives that the 
higher-level decision modules use to control the robot. It is essential to provide those 
modules with a good set of alternatives, each of which should be as efficient as 
possible. The high-level decision module is responsible for the analysis of the current 
situation and for the performing of decision-making processes carried out by each 
player in order to maximize, not only the performance of its actions, but also the 
global success of the team.  

The sensor fusion module has recently been redesigned, in what concerns its 
interface with the other modules, in order to get a common view over all the sensor 
measures. Now all sensors write into adequate structures, but only the sensor fusion 
module is allowed to update the World State. A recent, and very important, 



development as been the integration into the sensor fusion module of a self-
localization lines-based engine, based-on the one described in [12], that allows a high 
level of confidence in the robots estimated self-position. 

The new design of the vision system, which is now omnidirectional, has allowed 
the development of a new set of basic behaviors. The previous vision system was 
based on two cameras, one facing the field orthogonally, enabling the capture of a 360 
degrees view around the robot with roughly 1m radius, and the other pointing forward 
in the direction of the front of the robot. With that vision system the robot could sense 
far objects in front of it, but had a very limited view of its surrounding area in all 
other directions. As a consequence most of the movements had to be done with the 
robot turned to the target point. Using the new vision system, the robot can accurately 
move towards any given point at any given orientation. Several experiments of 
different alternatives have been carried out and a new set of optimized basic behaviors 
is now available. 

The high-level decision module currently uses state-machine based modeled roles 
that switch the basic behavior of the robot in accordance with the current situation and 
the previous state. Coordination is achieved by the definition of formations of 
different roles [11] and by a higher-level module where role switching is performed. 
The concepts of roles, formations and set-plays have previously been used in the 
RoboCup in some Simulation and Middle-Size teams. The coordination is in the 
process of integrating the information coming from the new self-localization engine, 
which allows the use of coordination techniques like SBSP [10]. In some cases, such 
as kick-ins or corners, specific set-plays are activated where a coordinated and 
synchronized set of basic behaviors is performed by all team robots. 

6 Conclusion 

This paper described the current development stage of the CAMBADA robots. Since 
the last submission of qualification material (in January/2006) several major 
improvements have been carried out, namely: the implementation of a new vision 
system based on a single camera in a catadioptric configuration; the development of a 
new tool to calibrate image colors based on the HSV color space; the implementation 
of vision software processing based on radial sensors; the development of an 
analytical method to get the relationship between image pixels and real world 
distances; the implementation and integration of a self-localization algorithm; the re-
design of the higher-level coordination and control software; a new kicking device 
with kick mode selection and power control; the replacement of the lead-acid batteries 
by smaller and lighter NiMH which allowed for, roughly, 30% robot weight 
reduction. 
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