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Abstract— One of the main research goals on distributed
autonomous agents in a Multi-Agent System is the development
of mechanisms to form a better world model using information
merging from different agents. In this paper, we present
a solution for robust online and real-time multiple object
tracking in a multi-agent system using information gathered
by various agents over time, using COP-KMeans for clustering
and Kalman Filtering for object state estimation. The proposed
solution was implemented on a real robotic soccer team and
evaluated in the RoboCup Middle-Size League competitions.
The robotic soccer was presented as one possible application
for the ideas expressed on this paper.

I. INTRODUCTION

One of the main research goals on distributed autonomous
agents in a Multi-Agent System (MAS) [1] is the develop-
ment of mechanisms to form a better world model using
information merging from different agents. It has already
been demonstrated that distributed sensor fusion can enhance
the belief by synergistically merging data from different
agents [2] to derive a better approximation of the World
Model than would be possible with each one individually
[3].

When compared to centralised approaches, distributed
systems present a major advantage: they are usually more
resilient to failures. However, it is much more difficult to
implement a real fully distributed system, when comparing
with a centralised approach, in which one “master“ agent
takes control of a task that all the team will benefit from.

In this paper, we present a solution for robust real-
time multiple object tracking in a multi-agent system using
information gathered by various agents over time. For the
purpose of this paper, we assume that each agent is able to
detect object candidates and will focus on the integration of
these observations into their world model.

The proposed solution was implemented on a real robotic
soccer team and evaluated in the RoboCup Middle-Size
League world championships. While having a huge potential
for a variety of applications, MAS are extensively tested
and benchmarked in RoboCup. The RoboCup Middle-Size
League provides an excellent testbed for autonomous robotic
teams in stochastic and highly dynamic environments. A soc-
cer match cannot be overlooked as a testbed, since it resem-
bles more the real world (complex and semi-unstructured)
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than a research lab. Although robotic soccer is presented as
an example, the ideas expressed on this paper are not limited
to this application area.

Following this Section, which introduces the problem
and some concepts about the application, we will start by
defining our implementation of the local object tracking in
Section II that will define how tracking is done in each agent
individually. In Section III, we will present a methodology
used to merge information from multiple agents to form
a unified representation of the obstacles spread around the
field. Then, we show some results and respective discussion
in Section IV and conclude the paper in Section V.

A. RoboCup Middle-Size League

Among the RoboCup leagues, the Middle-Size League
(MSL) is one of the most challenging in terms of rules and
environment (Figure 1). In this league, robots play soccer
autonomously in a 18x12m field with a standard size-5 FIFA
ball. Each team can have up to 5 robots with maximum size
of 50x50 cm base and 80 cm height and are not allowed to
weight more than 40 kg. Currently, all teams participating in
the league have an omni-directional drive system. The rules
of the matches are based on the official FIFA rules, with a
few required changes to adapt for the playing robots.

Fig. 1. Middle-Size League final in RoboCup Portuguese Robotics Open
at Bragança, Portugal

Specifically in this league and regarding sensor fusion
for world modelling [4], teams have been applying Kalman
Filters for ball and obstacles state estimation [5], [6]. More-
over, some interesting work has been done with integration
of information from several agents [7], in which consensus
problems are applied to distributed sensor fusion [8] and
belief propagation [9], for instance.

B. The CAMBADA Team

The developed work was accomplished within the MSL
context, more specifically in the CAMBADA (Cooperative
Autonomous Mobile roBots with Advanced Distributed Ar-
chitecture) team [10], the MSL Robotic Soccer team from
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Fig. 2. Example of RtDB functionality with 3 agents. Rtdb items can be shared (broadcasted to all team members) or local (can be used in processes
running in the local agent)

the University of Aveiro. This project started in 2003 and is
currently coordinated by the IEETA IRIS group and involves
people working on several areas from hardware (building the
mechanical structure of the robot, its hardware architecture
and controllers) to software (image analysis and processing,
sensor and information fusion, reasoning and control).

In this Section we present two main components of the
team software architecture that are relevant for the scope of
this work: the communication model and the agent integrator.

1) Communication Model: The Realtime Data Base
(RtDB) [11] is an open-source middleware developed by
the CAMBADA team that provides a seamless access to the
complete team state using a distributed database, partially
replicated to all team members, as is depicted on Figure 2.

All the information that the team needs to share (such
as the absolute positions and poses of all players, as well
as the position of the ball, etc.) are included in the RtDB,
which is extremely useful while in-game. For example, when
a certain robot does not see the ball, it can use other
teammate’s information as a guide. The modular structure
of the RtDB allows to easily add and remove items from it
via a configuration file.

The RtDB can also be intensively used as an inter-process
communication mean, due to its capability of defining local
memory items that are not broadcasted to other robots,
but are still accessible by other processes running on the
same agent environment. This local information may include
sensorial data from the vision system and the hardware
platform and also commands that are sent to the low-level
control layer through some gateway hardware interface.

The RtDB is tightly coupled with one process called
“comm”, which handles the Wi-Fi communication for both
sending information to the multicast group and receiving data
from other agents [12]. Together, RtDB and “comm” are used
by CAMBADA (and several other teams in MSL) to solve
the issues of intra-robot and inter-robot communications at
the same time, in a flexible and modular way.

2) Agent Integrator: Values provided by any sensor are
inevitably noisy and usually not very usable in their raw
form. This is why the integration of the information available
to the robot is a crucial step.

Integrator

Vision Data
(local)

Team Data
(shared)

Robot state
Obstacles state
Ball state
...

Odom Data
(local)

Fig. 3. Illustration of the agent integrator module

In the case of the CAMBADA software architecture,
this is the function of the Integrator module, which takes
values from different sources (camera, wheel encoders, team-
mates shared info, etc.), which are present in the RtDB,
and properly handle them so that a relevant and trustworthy
database is built to represent the current state of the world
(Figure 3).

When this work started, the agent was able to successfully
create a representation of the obstacles around the robot
at each agent cycle, but no merging was done among the
team members to take advantage of the distributed sensing
and communication model in this environment. If a correct
representation of the opponent obstacles can be achieved,
then the team can evolve from simple obstacle avoidance
to more complex areas such as opponent modelling and
coercive behaviour.

One of the main problems is the fact that robots move
very fast (up to 4 meters per second), which introduces a
lot of noise in its measurements, thus inducing a lot of false
detections. Therefore, a set of heuristics needs to be applied
to validate these detections.
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II. SINGLE-AGENT MULTI-OBJECT TRACKING

In a first instance, the integrator has to work with the local
information it gets in the current cycle, only afterwards it
is able to integrate information from other agents. In this
Section, we show how we implemented our Object Tracking
software module and discuss its usage in both obstacle
tracking and ball tracking.

A. Track Definition

In this work we assumed that each track can be modelled
as a Gaussian process in the 2D space, so each will contain a
Kalman Filter with 4 state variables: x, y, ẋ, ẏ - position and
velocity in x and y axis, of which implementation is beyond
the scope of this paper. Since robots are omni-directional,
orientation was not considered.

Furthermore, it is important to include some extra prop-
erties that will allow the tracker to monitor each track
consistency and to purge old tracks:
• age - how many cycles ago has this track been created
• visibleCount - how many cycles this track has been

visible since it was created
• invisibleCount - how many consecutive cycles

this track has not been matched with an observation

B. Obstacle Tracking

Being soccer a very dynamic scenario, our robots need
to be able to perceive the other robots around them, both
opponents and their own team-mates. They are required to
move around the field, either for re-positioning or dribbling
the ball, while avoiding contact with any other obstacle on
the field.

The simplest approach would be a reactive one, in which
the actions of the robot are defined by the obstacles seen
at that agent cycle. However, because the robots move and
rotate at very high speeds, there is always a percentage of
false-positives and false-negatives, which justifies the need
for an obstacle tracking method.

Taking into account that robots in this league have omni-
directional drive, there is no interest in estimating the ob-
stacles orientation. On the other hand, in game situations,
knowing the opponent positioning may allow the team to act
quicker, anticipate their actions and even prevent dangerous
situations like forward passes by covering an opponent from
the ball perspective, so it is crucial that this information is
as accurate as possible.

C. General Algorithm

For each new agent cycle, the object tracker algorithm is
updated with the observations on that cycle. This algorithm
can be summarized in 6 steps:

1) Predict new track positions
2) Assign observations to tracks
3) Update assigned tracks
4) Update unassigned tracks and purge old tracks
5) Create new tracks
6) Sorting

Step 1 - Predict new track positions: This step consists in
running the predict step in each track’s Kalman Filter. It will
not only update the covariance matrices, but also the state
estimate, predicting the position of each object one cycle
ahead, using the filtered velocity.

Step 2 - Assign observations to tracks: For the purpose
of this paper, we assume that each agent already has a set
of obstacles observations at the present cycle.

This step presents a data association problem: some of
these observations are obstacles which are already being
tracked, others are newly detected obstacles that will origi-
nate the creation of new tracks and finally some tracks might
not be updated with observations.

To solve this pairwise association problem, we used the
Hungarian method [13], that finds an optimal assignment for
a given cost matrix C in polynomial time, if we assume the
constraint that only one observation exists per track.

The cost matrix that was used is a padded square matrix - it
has additional columns/rows to account for the possibility of
not matching any of the observations with the current tracks.
If there are T tracks and N observations, the dimension of
the cost matrix C will be (T + N) × (T + N). The lines
of this matrix represent tracks and the columns represent
observations.

After running the Hungarian algorithm over the cost
matrix C, there will be three main groups in the posteriori
logical matrix C ′: matched tracks (M ), unmatched tracks
(U ) and unmatched detections (V ). The lower-right part of
the matrix C ′ is ignored.

C ′ =

(
M U
V 0

)
Step 3 - Update assigned tracks: For each match (sub-

matrix M ), the track’s Kalman Filter is updated with the
respective observation, age and visibleCount counters
are incremented and invisibleCount is reset.

Step 4 - Update unassigned tracks and purge old tracks:
For the unassigned tracks (submatrix U ) The age and
invisibleCount counters are incremented and a factor
f < 1.0 is applied to the velocities, to avoid that tracks which
will remain unassigned for some cycles (and eventually
removed later) remain with the same speed during that
period. These factors are adjusted based on the dynamics
of the opponent team and our team frame-rate.

Furthermore, a validation is performed to check if the
track should remain on the list or should be removed. Here,
two heuristics were applied: a track is deleted if either the
invisibleCount counter is higher than a threshold or the
visibility ratio (visibleCount/age) goes below a certain
threshold. The first heuristic is the simple purge method, in
which a track is deleted when it is not observed for a while.
The second one allows spurious detections to be deleted on
the next cycle (even if the invisible threshold was still not
reached).
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Step 5 - Create new tracks: A new track is created for
each unassigned detection (submatrix V ), which represent
observations not matched with any prior track.

Step 6 - Sorting: In the case of obstacles, the sorting is
done by descending visibility - (tracks with higher visibility
ratio will be first on the list). This step will be important
later, for the decision of which tracks should be shared with
the team-mates, since there is a limit on the number of tracks
that can be shared, imposed by MSL rules as a bandwidth
usage limit.

D. Obstacle Sharing Criteria

Despite locally detecting and taking into account every
observation in its decisions, each agent is very cautious about
the information it shares. Since other agents on the team
can use the shared information, it is very important that the
information that an agent broadcasts is as accurate as possible
and ideally with no false-positives.

Therefore, a set of conditions are required to start sharing
a particular track on the RtDB. As previously described,
tracks with higher visibility have priority to be shared.
Furthermore, it is required that the track age is higher than
a threshold, it must have a minimum visibleCount and
visibility ratio, and must not exceed a maximum distance
from the observing robot (to prevent false positive detections
on higher distances).

Once a track is set to be shared, it will be shared until it
is deleted or leaves the field.

E. Ball Tracking

The ball is one of the most important objects on the field,
since the objective is to play soccer. Just like in the case of
obstacles, it is also common to have spurious ball detections
for various reasons, including occlusions by other robots,
lighting conditions, high speeds (causing motion blur on the
image), self occlusion while dribbling, etc.

Ball tracking differs from obstacle tracking in the fact that
there should be just one ball inside the field, but the agent
should be able to handle situations where it perceives more
than one candidate. We decided to keep track of multiple
balls, using the same method described above for obstacle
detection. However, instead of sorting by visibility we select
the oldest track as the one to use - so, in this case, the
sorting is done by age instead of visibility. Different purging
thresholds were also used, but the core of the method is the
same as described in the last Section.

III. MULTI-OBSTACLE TRACKING WITH MULTIPLE
OBSERVATIONS

In this Section, we present a methodology used to merge
information from multiple agents to form a unified represen-
tation of the obstacles spread around the field.

In the context of the Middle-Size League, this is particu-
larly important for the coach, which is a computer allowed
to communicate with the robots, but not allowed to have
any sensors attached. The objective of this coach is to give

high-level coordination instructions for the team - strategy,
formation, attitude, etc. Using the information shared by the
robots, the coach is able to create a representation of the
opponents position, which can be used to anticipate opponent
gameplay, such as forward passes and set-plays.

Clustering

Robot 1 
Obstacles

Robot N 
Obstacles

...

Robot 2 
Obstacles

Unified
Observations

Object 
Tracker

Obstacle 
Validation

Unified Obstacle List

Fig. 4. Summary of the tracking system using multiple agent shared
observations

Figure 4 shows an overview of the global tracker. It
considers the various agents shared obstacle tracks as ob-
servations. Although this shared information is not made of
raw observations, but rather processed observations that have
been associated together as a track and met the previously
discussed criteria to be shared among the team, they can
be considered observations for the purpose of creating this
unified obstacle list.

A. Observation Clustering

In the last Section, we already demonstrated how the
Hungarian Algorithm can be used to match observations
with tracks. However, by solving a global minimization
problem, it can not account for situations where there are
multiple observations for the same object. Therefore, a clus-
tering algorithm was implemented, based on the Constrained
K-Means method [14], to take advantage of the background
knowledge, that can be expressed as a set of instance-level
constraints on the clustering process.

In the case of the MSL, the maximum size of the obstacles
is limited by the rules (50 × 50cm), which implies that an
obstacle that occupies the maximum allowed size can be
perceived as a 70.7cm-wide obstacle (when seen from the
diagonal). Despite this theoretical value, on this league, at the
time of writing this paper, most teams opt for a triangular
configuration on their platforms, meaning that size is not
reached. Moreover, their sides do not measure less than
30cm.

Using this background knowledge, the COP-Kmeans
method has been applied with the following constraints:
• if width(centroidi) > 0.7m, split in two centroids
• if distance(centroidi, centroidj) < 0.3m, merge

centroidi with centroidj
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B. Applying the Object Tracker

The output of the previous clustering stage is a unified
observation list, which is the input for the object tracker
module. Its implementation was already described in Section
II-C.

C. Obstacle Validation

To avoid unreliable information, the unified tracks are
subject to a validation. Once a track has been validated it
will remain valid until it disappears.

d1

d2

d3

Valid Obstacle

Invalid Obstacle

A

B

C

D

E

Fig. 5. Example of the validation criteria using two robots. Here, three
observations are validated and two do not pass the validation criteria. The
image is not in scale.

Figure 5 shows an illustration of the implemented valida-
tion methodology. Essentially, the position of the team robots
define three different zones:

• Zone 1 - any position closer than d1 from a team mate.
In this zone, only tracks observed by the closest team
mate robot can be validated. It is such a small distance
that the closest robot must be able to see it directly. This
prevents using detections of spurious obstacles close to
team-mate positions.

• Zone 2 - any position closer than d2 from a team mate.
Any track lying on one of these zones is validated.

• Zone 3 - any position closer than d3 from a team
mate. A track lying on this zone requires at least two
observing robots to be validated.

• Any tracked obstacle which distance from the closest
team-mate is more than d3 is not validated, since it is
outside the maximum detection distance boundary.

In the same figure, there are 5 obstacles:

• Obstacle A - Valid - its position lies inside Zone 1 of
the robot on the left.

• Obstacle B - Not Valid - the obstacle is inside Zone
3 of one robot, but not the other robot.

• Obstacle C - Valid - it is inside Zone 3 of both robots.
• Obstacle D - Not Valid - It is outside all zones of all

robots.
• Obstacle E - Valid - it is inside Zone 2 of a team-mate.

IV. RESULTS AND DISCUSSION

In MSL, since 2016, teams are encouraged to supply their
worldstate information during the matches (only for logging
purposes), with the objective of providing the other team a
reference to benchmark solutions after the game. In this case,
knowing the exact location of the opponents after the match,
allows us to use it as a groundtruth to match our obstacle
detection algorithm.

0
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Precision Recall False−Positive Rate

Statistical Analysis of RPO 2016 Final

Fig. 6. Detection Rate and False-Positive Rate results

Therefore, we implemented and tested this approach dur-
ing the first half of the final of the RoboCup Portuguese
Open 2016 and analysed our obstacle detection against the
“groundtruth” provided by the other team. For this purpose,
we only considered free-play situations, because in other sit-
uations, the referee may be inside the field repositioning the
ball, and therefore inducing extra obstacles in the perception
of the robots. Under these conditions, our dataset contains
1828 frames sampled at 10 Hz. Based on the false-positive
rates and considering the predefined rules for validation on
zones 1,2 and 3, the considered distance parameters were
d1 = 1.0m, d2 = 2.5m and d3 = 5m.

To benchmark the performance of this solution, we used
two different metrics:
• Precision - percentage of correctly identified obstacles

(over the detections) in each frame
• Recall - percentage of correctly identified obstacles

(over the groundtruth) in each frame
• False-Positive Rate (FPR) - percentage of outliers in

each frame
As Figure 6 shows, we obtained a median of:
• Precision: 75%
• Recall: 75%
• False-Positive Rate: 25%
Of course, the objective is always to maximise both

precision and recall and to minimise the FPR. However, there
is always a trade-off between between these two metrics,
since it is always possible to increase distances d1, d2 and d3,
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but not without sacrificing the FPR, because increasing those
distances would mean to detect even more false-positives.

Experience and visual analysis tell us that these spurious
detections occur mostly when our robots are moving fast
(they can reach velocities of 4 meters per second) and
the obstacles are far away from the detecting robots. As
an improvement, the distances could vary with the robot
velocity modulus.

It is also important to note that we are including false-
positives that are created at the beginning of all this process -
object detection - of which scope is outside this work. More-
over, by visual inspection we also noticed that sometimes
the false-positive detections occur near our robots. Given
our premises, it means that the robots sometimes wrongly
identify obstacles in its vicinity. This can occur, for example,
in cluttering situations, where strong shadows appear on the
field. Since our obstacle detection relies mostly on colour
(and the robots have to be mostly black), this sometimes
creates false detections.
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Fig. 7. Histogram of the number of False-Positives

However, we further investigated the false-positives and
the histogram in Figure 7 shows that we detected at most 8,
but that most times the number stays between 0 and 2, which
is acceptable, given the environment conditions of the test.
In fact, in our previous approach (a naive merging algorithm,
without validation), the robots could detect up to 20 obstacles
in some situations, which would give us, at least, 15 false-
positives. Unfortunately, there is no work from other teams
which we can fairly compare these results with.

The evaluated metrics will allow us to further improve the
algorithm, by optimizing the avaliable parameters, always
with the objective of maximising the detection rate and
minimising the False-Positive Rate.

V. CONCLUSION

In this paper we presented a solution to integrate informa-
tion from several agents to formulate a unified world state
representation. We started by discussing the implementation
of an object tracking module and its application in tracking
two different types of objects in a robotic soccer environ-
ment: obstacles and the ball.

We then moved to the presentation of a methodology to
merge this information that is generated in (and shared by)
different agents into an unified representation of the obstacles
spread around the field.

This solution was implemented on a Middle-Size League
agent integrator and tested during the RoboCup Portuguese
Open 2016 competition.

The results show that a relatively high detection rate can
be achieved, with some room for improvement concerning
the false-positive rate. Nonetheless, this strategy played a
major role in a number of situations, by allowing the team
to act quicker, anticipate the opponent actions and even
prevent dangerous situations like forward passes by covering
an opponent from the ball.
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