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Abstract. The game of soccer is one of the main focuses of the RoboCup
competitions, being a fun and entertaining research environment for
the development of autonomous multi-agent cooperative systems. For
an autonomous robot to be able to play soccer, first it has to perceive
the surrounding world and extract only the relevant information in the
game context. Therefore, the vision system of a robotic soccer player is
probably the most important sensorial element, on which the acting of
the robot is fully based. In this paper we present a new modular time-
constrained vision library, named UAVision, that allows the use of video
sensors up to a frame rate of 50fps in full resolution and provides accu-
rate results in terms of detection of the objects of interest for a robot
playing soccer.

1 Introduction

The research area of robotic vision is greatly evolving by means of interna-
tional competitions such as those promoted and organized once per year by
the RoboCup Federation. The RoboCup initiative, through competitions like
RoboCup Robot Soccer, RoboCup Rescue, RoboCup@Home and RoboCup Ju-
nior, is designed to meet the need of handling real world complexities, while
maintaining an affordable problem size and research cost. It offers an integrated
research task covering the broad areas of artificial intelligence, computer vision
and robotics.

The soccer game in the RoboCup Middle Size League (MSL) is a standard
real-world test for autonomous multi-robot systems. In this league, omnidirec-
tional vision systems have become interesting in the last years, allowing a robot
to see in all directions at the same time without moving itself or its camera [1].
The environment of this league is not as restricted as in the others and the pace
of the game is faster than in any other league (currently with robots moving with
a speed of 4 m/s or more and balls being kicked with a velocity of more than 10
m/s), requiring fast reactions from the robots. In terms of color coding, in the
fully autonomous MSL the field is still green, the lines of the field and the goals
are white and the robots are mainly black. The two teams competing are wearing
cyan and magenta markers. For the ball color, the only rule applied is that the
surface of the ball should be 80% of a certain color, which is usually decided



before a competition. The colors of the objects of interest are important hints
for the object detection, relaxing thus the detection algorithms. Many teams are
currently taking their first steps in 3D ball information retrieving [2], [3]. There
are also some teams moving their vision systems algorithms to VHDL based
algorithms taking advantage of the FPGAs versatility [2]. Even so, for now, the
great majority of the teams base their image analysis in color search using radial
sensors [4,5,6].

In this paper we present a library for color-coded object detection, named
UAVision, that is currently being used by the robots of the team CAMBADA,
participating in the Middle Size League. The design of the library follows a mod-
ular approach as it can be stripped down into several independent modules(that
will be presented in the following sections). Moreover, the architecture of our
software is of the type “plug and play”. This means that it offers support for dif-
ferent vision sensors technologies and that the software created using the library
is easily exportable and can be shared between different types of vision sensors.
These facts, on the other hand, make it appropriate for being used by robots in
all other leagues. Another important aspect of our library is that it takes into
consideration time constraints. All the algorithms behind this library have been
implemented focusing on maintaining the processing time as low as possible.
Realtime processing means to be able to complete all the vision dependant tasks
within the limits of the frame rate.

The vision system for color-coded object detection within the RoboCup soc-
cer games of Middle Size League that we have implemented using the UAVision
library can work with frame rates up to 50fps using a resolution of 1024× 1024
pixels, both in Bayer, RGB or YUV color modes. Detailed processing time ob-
tained will be presented in Section 3. Moreover, we provide experimental results
showing the difference of working with the different frame rates in terms of the
delay between the perception and the action. As far as we know, there is no
previous published work that presents so detailed information about this issue.

The library that we are proposing comes as a natural development of the work
already presented within the RoboCup community. After having implemented
vision systems for robotic soccer players that perform both in the Standard
Platform League [7] and Middle Size League [8,9,11], we are proposing this new
cross-library that can be used by robots whose architecture might be different,
but the goal remains the same: the game of soccer. We consider our work an
important contribution for the RoboCup Soccer community since so far, there
are no machine vision libraries used for the games of soccer that take into con-
sideration time constraints. UAVision aims at being an open-source free library
that can be used for robotic vision applications that have to deal with time con-
straints as are the RoboCup competitions. Moreover, we made publicly available
the video sequences used in the experimental results of this paper, both in Bayer
and RGB color modes, so that other researchers can reproduce our results and
test their own algorithms.

This paper is structured in five sections, the first of them being this intro-
duction. Section 2 describes the modules of the vision library. Section 3 presents



the results that have been achieved using the library in the MSL robots. Sec-
tion 4 concludes the paper and future lines of research are highlighted. Finally,
in Section 5 the institutions that have supported this work are acknowledged.

2 Library Description

The library that we are presenting is intended for the development of artificial vi-
sion systems for the detection of color-coded objects, being the robotic soccer the
perfect application for its usage. The library contains software for image acquisi-
tion from video cameras supporting different technologies, for camera calibration
and for blob formation, which stands at the basis of the object detection.

2.1 Image Acquisition

UAVision provides the necessary software for accessing and capturing images
from three different camera interfaces, so far: USB cameras, Firewire cameras
and Ethernet cameras. For this purpose, the Factory Design Pattern [12] has been
used and a factory called “Camera” has been implemented. The user can choose
from these three different types of cameras in the moment of the instantiation.
An important aspect to be mentioned is that UAVision uses some of the basic
structures from the core functionality of OpenCV library: the Mat structure
as a container of the frames that are grabbed and the Point structure for the
manipulation of points in 2D coordinates. Images can be acquired in the YUV,
RGB or Bayer color format.

The module of Image Acquisition also provides methods to convert images
between the most used color spaces: RGB to HSV, HSV to RGB, RGB to YUV,
YUV to RGB, Bayer to RGB and RGB to Bayer.

2.2 Camera Calibration

The correct calibration of all the parameters related to the system is very impor-
tant in any vision system. The module of camera calibration includes algorithms
for calibration of the intrinsic and extrinsic camera parameters, the computation
of the inverse distance map, the calibration of the colormetric camera parameters
and the detection of the mirror, robot center and the definition of the regions of
the image that do not have to be processed.

The result of the vision system calibration can be stored in a configuration
file which contains four main blocks of information: camera settings, mask, map
and color ranges. The mask is a binary image representing the areas of the image
that do not have to be processed, since they contain only parts of the body of the
robot, which are not relevant for the object detection. By ignoring these areas of
the image, both the noise in the image and the processing time can be reduced.
The map, as the name suggests, is a matrix that represents the mapping between
pixel coordinates and real world coordinates.



The camera settings block is where the basic information is registered. Among
others, these include the resolution of the image acquired, the Region of Interest
regarding the CCD or CMOS of the camera and colormetric parameters, among
others.

The color ranges block contains the color regions for each color of interest
(at most 8 different colors as we will explain later) in a specific color space (ex.
RGB, YUV, HSV, etc.). In practical means, it contains the lower and upper
bounds of each one of the three color components for a specific color of interest.

The UAVision library contains algorithms for the self-calibration of most of
the parameters described above, including some algorithms developed previously
within our research group, namely the algorithm described in [8] for the auto-
matic calibration of the colormetric parameters and the algorithms presented
in [1,9] for calibration of the intrinsic and extrinsic parameters of catadioptric
vision systems used to generate the inverse distance map. For the calibration of
the intrinsic and extrinsic parameters of a perspective camera, we have used and
implemented the algorithm for the “chessboard” calibration, presented in [13].

2.3 Color-coded object detection

The color-coded object detection is composed by four sub-modules that are
presented next.

• Look-Up Table

For fast color classification, color classes are defined through the use of a
look-up table (LUT). A LUT represents a data structure, in this case an array,
used for replacing a runtime computation by a basic array indexing operation.

This approach has been chosen in order to save significant processing time.
The images can be acquired in the RGB, YUV or Bayer format and they are
converted to an index image (image of labels) using an appropriate LUT for each
one of the three possibilities.

The table consists of 16,777,216 entries (224, 8 bits for R, 8 bits for G and 8
bits for B) with one byte each. The table size is the same for the other two pos-
sibilities (YUV or Bayer), but the meaning of each of the components changes.
Each bit in the table entries expresses if one of the colors of interest (white,
green, blue, yellow, orange, red, blue sky, black, gray - no color) is within the
corresponding class or not. A given color can be assigned to multiple classes at
the same time. For classifying a pixel, first the value of the color of the pixel is
read and then used as an index into the table. The 8-bit value then read from
the table is called the “color mask” of the pixel. It is possible to perform image
subsampling in this stage in systems with limited processing capabilities in order
to reduce even more the processing time. The color classification is only applied
to the valid pixels if a mask exists.



• Scanlines

To extract color information from the image we have implemented three
types of search lines, which we also call scanlines: radial, linear (horizontal or
vertical) and circular. They are constructed once, when the application starts,
and saved in a structure in order to improve the access to these pixels in the
color extraction module. This approach is extremely important for the reduction
of processing time. In Fig. 1 the three different types of scanlines are illustrated.

a) b) c) d

Fig. 1. Examples of different types of scanlines: a) horizontal scanlines; b) vertical
scanlines; c) circular scanlines; d)radial scanlines.

• Run Length Encoding (RLE)

For each scanline, an algorithm of Run Length Encoding is applied in order
to obtain information about the existence of a specific color of interest in that
scanline. To do this, we iterate through its pixels to calculate the number of runs
of a specific color and the position where they occur. Moreover, we extended this
idea and it is optional to search, in a window before and after the occurrence
of the desired color, for the occurrence of other colors. This allows the user to
determine both color transitions and color occurrences using this approach.

When searching for run lengths, the user can specify the color of interest,
the color before, the color after, the search window for these last two colors and
three thresholds that can be used to determine the valid information.

As a result of this module, we obtain a list of positions in each scanline and, if
needed, for all the scanlines, where a specific color occurs, as well as the amount
of pixels in each occurrence (Fig. 2).

• Blob formation

To detect objects with a specific color in a scene, we have to be able to
detect regions in the image with that color, usually named blobs, and validate



those blobs according to some parametric and morphological features, namely
area, bounding box, solidity, skeleton, among others. In order to construct these
regions, we use information about the position where a specific color occurs based
on the Run Length module previously described (Fig. 2).

We iterate through all the run lengths of a specific color and we apply an algo-
rithm of clustering based on the euclidean distance. The parameters of this clus-
tering are application dependent. For example, in a catadioptric vision system,
the distance in pixels to form blobs changes radially and non-linearly regarding
the center of the image.

While the blob is being built, its descriptor is being updated. The description
of the blobs currently calculated are, to name a few, center, area, width/height
relation, solidity, etc.

• Object detection
The last step of the vision pipeline is the decision regarding whether the

colors segmented belong to an object of interest or not. In the vision system
developed for the CAMBADA team using the proposed library, the white and
black points that have been previously run-length encoded are passed directly to
higher level processes, where localization based on the white points and obstacle
avoidance based on the black points are performed.

For the ball detection, the blobs that are of the color of the ball have to
meet the following validation criteria before being labelled as ball. First, a map-
ping function that has been experimentally designed is used for verifying a size-
distance from the robot ratio of the blob (Fig. 2(c)). This is complemented by
a solidity measure and a width-height ratio validation, taking into considera-
tion that the ball has to be a round blob. The validation was made taking into
consideration the detection of the ball even when it is partially occluded.

3 Experimental Results

The UAVision library is currently used by the MSL team of robots CAMBADA
team from University of Aveiro. These robots are completely autonomous, able
to perform holonomic motion and are equipped, in terms of hardware, with a
catadioptric vision system that allows them to have omnidirectional vision [11].
The architecture of the vision system is presented in Fig. 3.

The pipeline of the object detection procedure is the following: after having
an image acquired, using a LUT previously built, the original image is trans-
formed into an image of labels. This image of color labels, also denominated in
our software by index image, will be the basis of all the processing that follows.
The index image is scanned using one of the three types of scanlines previously
described (circular, radial or linear) and the information about transitions be-
tween the colors of interest is run length encoded. Transitions between green
and other colors of interest (white, ball color, black) are searched in order to
ensure that the objects detected are inside the field area. Blobs are formed by
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Fig. 2. On the left, an image captured using the Camera Acquisition module of the
UAVision library. In the center, the run length information annotated. On the right,
illustration of the radius (in pixels) of the ball relative to the distance (in centimeters)
from the robot at which it is found. The blue marks represent the measures obtained,
the green line the fitted function and the cyan and red line the upper and lower bounds
considered for validation.

Fig. 3. Software architecture of the vision system developed based on the UAVision
library.

merging adjacent RLEs of the ball color. The blob is then labeled as ball if
the blob area/distance from the robot respects a certain function that has been
experimentally determined (see Fig. 2(c)). Moreover, the width/height relation
and solidity are also used for ball validation. If a given blob passes the validation
criteria, its center coordinates will be passed to higher-level processes and shared
on a Real-time Database (RtDB) [14]. For the obstacles and line detections, the
coordinates of the detected points of interest are passed to higher-level processes
through the RtDB.



A visual example of the detected objects in an image acquired by the vision
system is presented in Fig. 4. As we can see, the objects of interest (balls, lines
and obstacles) are correctly detected even when they are far from the robot.
Moreover, the balls can correctly be detected up to 9 meters (notice that the
robot is in the middle line of the field and the further ball is over the goal line)
even when they are partially occluded or engaged by another robot. No false
positives in the detection are observed.

a) b)

Fig. 4. On the left, an image acquired by the omnidirectional vision system. On the
right, the result of the color-coded object detection. The blue circles mark the white
lines, the white circles mark the black obstacles and the mangenta circles mark the
orange blobs that passed the validation thresholds.

Several game scenarios have been tested using the CAMBADA autonomous
mobile robots . In Fig. 5(a) we present a graphic with the result of the ball
detection when the ball is stopped in a given position (the central point of the
field, in this case) while the robot is moving. The graphic shows a consistent ball
detection while the robot is moving in a tour around the field. The field lines are
also properly detected, as it is proved by the correct localization of the robot in
all the experiments. The second scenario that has been tested is illustrated in
Fig. 5(b). The robot is stopped on the middle line and the ball is sent across
the field. This graph shows that the ball detection is accurate even when the
ball is found at a distance of 9m away from the robot. Finally, in Fig. 5(c)
both the robot and the ball are moving. The robot is making a tour around the
soccer field, while the ball is being sent across the field. In all these experiments,
no false positives were observed and the ball has been detected in more than
90% of the frames. Most of the times the ball was not detected was due to the
fact that it was hidden by the bars that hold the mirror of the omnidirectional
vision system. The video sequences used for generating these results, as well as
the configuration file that has been used, are available at [15]. In all the tested
scenarios the ball is moving on the ground floor since the single camera system
has no capability to track the ball in 3D.
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Fig. 5. On the left, a graph showing the ball detection when the robot is moving in
a tour around the soccer field. In the middle, ball detection results when the robot is
stopped on the middle line on the right of the ball and the ball is sent across the field.
On the right, ball detection results when both the robot and the ball are moving.

The processing time shown in Table. 1 proves that the vision system built
using the UAVision library is extremely fast. The full execution of the vision
pipeline software only takes on average a total of 12 ms, allowing thus a framerate
greater than 80fps. Moreover, the maximum processing time that we measured
was 13 ms, which is a very important detail since it shows that the processing
time is almost independent of the scene complexity. The time results have been
obtained in a computer with a Intel Core i5-3340M CPU @ 2.70GHz 4 processor,
processing images with a resolution of 1024× 1024 pixels (a Region Of Insterest
centered in the CMOS of the camera used). In the implementation of this vision
system we didn’t use multi-threading. However, both image classification and
the next steps can be parallelized if needed.

Operation Time (ms)

Acquisition 1

RLE 4

Blob creation 2

Blob validation 3

Total 12

Table 1. Average processing times measured using the video sequences that we provide
along with this paper.

The LUT is created once, when the vision process runs for the first time and
it is saved in the cache file. If the information from the configuration file does
not change during the following runs of the vision software, the LUT will be
loaded from the cache file, reducing thus the processing time of this operation
by approximately 25 times.



For the video sequences that we provide, the following number of scanlines
have been built during the performance of the vision software:

– 720 radial scanlines for the ball detection.
– 98 circular scanlines for the ball detection.
– 170 radial scanlines for the lines and obstacle detection.
– 66 circular scanlines for the lines detection.

The cameras that have been used can provide 50fps at full resolution (1280×
1024 pixels) in RGB color space. However, some cameras available on the market
can only provide 50 fps accessing directly to the CCD or CMOS data, usually a
single channel image using the well known Bayer format. As described before, the
LUT in the vision library can work with several color spaces, namely RGB, YUV
and Bayer format. We repeated the three scenarios described above acquiring
images directly in the Bayer format also at 50fps and the experimental results
show that the detection performance is not affected as expected, since the con-
version between Bayer and RGB does not generate new information regarding
the perception.

In addition to the good performance in the detection of objects, both in
terms of number of times that an object is visible and detected and in terms of
error in its position, the vision system must also perform well in minimizing the
delay between the perception of the environment and the reaction of the robot.
It is obvious that this delay depends on several factors, namely the type of the
sensor used, the processing unit, the communication channels and the actuators,
among others. To measure this delay in the CAMBADA robots, a setup was
developed which is presented in Fig. 6. The setup consists of a led that is turned
on by the motor controller board and the same board measures the time that the
whole system takes to acquire and detect the LED flash, and send the respective
reaction information back to the controller board. The vision system detects the
led on and when it happens, the robotic agent sends a specific value of velocities
to the hardware (via HWComm application). This is the normal working mode
of the robots in game play.

As presented in Fig. 7, the delay time between perception and the reaction
of the robot significantly decreases when working at higher frame rates. The
average delay at 30fps is 65 ms and at 50fps it is 53ms, which corresponds to
an improvement of 22%. The jitter verified reflects the normal function of the
several modules involved, mainly because there is no synchronism between the
camera and the processes running on the computer.

4 Conclusions and Future Work

In this paper we have presented a novel time-constrained computer vision li-
brary that has been successfully employed in the games of robotic soccer. The
proposed library, UAVision, encompasses algorithms for camera calibration, im-
age acquisition and color coded object detection and allows frame rates of up to
50 fps.



Fig. 6. The blocks used in our measurement setup. These blocks are used by the robots
during game play.
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Fig. 7. Histograms showing the delay between perception and action on the CAM-
BADA robots. On the left, the camera is working at 50fps (average = 53ms, max =
74ms, min = 32ms). On the right, the camera working at 30fps (average = 65ms, max
= 99ms, min = 32ms).

In what concerns the future work, the next step will be to use the developed
library in other RoboCup Soccer Leagues and the first concern is adding support
for the cameras used by the robots in the Standard Platform and Humanoid
Leagues and employing the same vision system on them. Moreover, we aim
at providing software support for image acquisition from several other types of
cameras and complement the library with algorithms for generic object detection,
relaxing thus the rules of color coded objects and supporting the evolution of
the RoboCup Soccer Leagues.
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