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1 Introduction

Within the many existing research domains in the area of multi robot systems, robotic soccer is one of the
most popular ones. One of the existing initiatives within the area is the RoboCup. The RoboCup1 is an
international joint project to promote artificial intelligence, robotics and related fields. Most of the RoboCup
leagues have soccer as platform for developing technology,either at software or hardware levels, with single
or multiple agents, cooperative or competitive (Kitano et al., 1997).

Among RoboCup leagues, the Middle Size League (MSL) is one ofthe most challenging, due to its
characteristics in terms of rules and environment. In this league, each team is composed of up to 5 robots
with maximum size of 50x50cm base, 80cm height and a maximum weight of 40Kg, playing in a field of
18x12m. The rules of the game are similar to the official FIFA rules, with required changes to adapt for the
playing robots (MSL Technical Committee, 2010).

Each robot is autonomous and has its own sensorial means. They can communicate among them, and
with an external computer acting as a coach, through a wireless network. This coach computer, however,
cannot have any sensor, it only knows what is reported by the playing robots. The agents should be able to
evaluate the state of the world and make decisions suitable to fulfil the cooperative team objective.

The work described in this document was accomplished withinthe MSL context. CAMBADA,Cooper-
ative Autonomous Mobile roBots with Advanced Distributed Architecture, is the MSL Robotic Soccer team
from the University of Aveiro. The project started in 2003, coordinated by the IEETA2 ATRI3 group and
involves people working on several areas for building the mechanical structure of the robot, its hardware
architecture and controllers and the software developmentin areas such as image analysis and processing,
sensor and information fusion, reasoning and control.

Being soccer a very dynamic scenario, our robots need to be able to perceive the other robots around
them, both opponents and the own team mates and need to move effectively around the field, meaning they
must move (either freely for repositioning or dribling the ball) while avoiding contact with any other obstacle
on the field, either robot or even the referee.

1http://www.robocup.org/
2Instituto de Engenharia Electrónica e Telemática de Aveiro - Aveiro’s Institute of Electronic and Telematic Engineering
3Actividade Transversal em Robótica Inteligente - Transverse Activity on Intelligent Robotics



Figure 1: Picture of the team robots used to obtain the results presented on this chapter.

For the CAMBADA team to improve its performance during the games, we felt the necessity to improve
the detection and sharing of obstacles among team mates. Since we make use of team formations, which
keep the robots strategically spread around the field, we wish to ensure a global idea of the field occupancy
for all the team. If we achieve a good cover of the field and pinpoint the obstacles inside it, passlines and
dribbling corridors can be estimated more easily allowing improvements on team strategy and coordination.

This is essentially an information fusion problem, as the information available from the sensors of
each robot and the shared information must be matched and refined. The final result of this fusion is a
representation of the state of the surrounding world. In theCAMBADA team, there is an integration process
responsible for that task. It is a step executed after image analysis and is responsible to take raw information
from the vision and other robot sensors and make a sensor fusion of all sources. For that, it may use the
values stored in the previous representation, the current sensor measures (possibly after pre-processing) that
has just arrived, the current actuator commands and also information that is available from other robots
sensors or world state.

All the information available from the sensors in the current cycle is kept in specific data structures
(Figure 2), for posterior fusion and integration, based on both the current information and the previous state
of the world.

This chapter focuses on the description of the obstacle treatment in the CAMBADA team. In Section
2 a general description of how the obstacles are detected by the vision process is presented, also describing
how the raw information is passed to the integration process. Section 3 describes how the raw information is
read and, based only on the local robot information, how the identification is processed. Section 5 presents
how the sharing and acceptance of team mates obstacles is made. Section 6 concludes this document.

Note that most of the Figures presented in this chapter are images acquired by the omni-directional
camera of the robots. To ensure the comprehension of the Figures, in most of them, lines were made around
the areas of interest of the image. Also, the triangles and squares representing the obstacle centres and limits
inside that areas of interest were increased in size and intensity, since the original image capture squares are
more difficult to see in images of the presented size.



Figure 2: Integrator functionality diagram.

2 Visual obstacle detection

In the CAMBADA team, visual information about the obstaclesis gathered by the omnidirectional camera.
According to RoboCup rules, the robots are mainly black. Since in a game robots play autonomously, all
obstacles in the field are the robots themselves (and occasionally the referee, which is recommended to have
black/dark pants). The CAMBADA vision algorithm takes advantage of this fact and detects the obstacles
by evaluating blobs of black color inside the field of play (Neves et al., 2007).

The algorithm for detecting objects in the CAMBADA omni vision system is based in color segmenta-
tion. Several items of interest are detected based on their color: the green field, the white lines, the black
robots and the defined colored ball. From the center of the image, which corresponds to the center of the
robot, radial sensors are created around the robot, each sensor represented by a line with a given angle (Fig-
ure 3). These lines are calledscanlines(Neves et al., 2008) and the color of the pixels on them is analyzed,
in search for the defined colors or an undefined one. In the obstacles case, the lines are searched for black
color.

2.1 Obstacles detection using only visual information

The detection of black color on the scanlines was analyzed both in angular intervals and length intervals,
to define the limits of each black blob. Since the size of the objects on the image vary with the distance
to the robot, it is advantageous to know the relation of that variation. The omni vision system is a non-
SVP hyperbolic catadioptric system. Through an inverse distance map calculation, by exploring a back-
propagation ray-tracing approach and the physical properties of the mirror surface (Cunha et al., 2008), the
relation between the distances in the image and the distances in the real world is known (Figure 4).

Through the function represented in Figure 4, it is possibleto create a normalized relation of blobs
width and length with the distance. Sometimes an obstacle was separated in several blobs, mainly due to the
noise in the image and problems in color classification, which led to fails in the detection of black regions in
the scanlines. To avoid these situations, an offset was considered to decide when the angular space between
blobs was considered enough to represent a real obstacle separation. The same principle was considered
concerning the position of the black area in consecutive scanlines.



Figure 3: Picture representing an instance ofscanlines, which work as a mask overlapped with
the segmented camera image. Only the pixels on that mask willbe analyzed.
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Figure 4: Relation between pixels and metric distances of the omnidirectional vision system. The
center of the robot is considered the origin and the metric distances are considered on the ground
plane.

The separation offsets of a blob close to the robot were bigger than the ones at a high distance, to
maintain coherent precision. The angular separation offset was considered for situations where robots were
side-by-side, at the same distance, but there was no visual contact between each blob; the length separation
offset was checked for situations where, on sequential scanlines, there were blobs with visual contact but the
robots were actually at different distances. Other detailscan be found in (Silva et al., 2009).



The results of this approach were very dependent on a polynomial function for defining the pixel vari-
ation on the image. In practice it was verified that at higher distances (some tens of pixels from the mirror
border) the offset definition in pixels was not accurate, as the distance relation tended to very high val-
ues. Since the offset needs to depend on the inter-pixel distance, when maintaining an acceptably accurate
threshold relation for shorter distances, the offset at longer distances would not be applicable. This caused
the merging of blobs which were clearly part of different objects (Figure 5) or in some situations, caused
clearly segmented obstacles to be ignored.

a)

b) c)

Figure 5: Capture of a camera frame with an incorrect visual obstacle detection as described.
Top a): Original frame; Bottom Leftb): Color segmented image; Bottom Rightc): Blob image
obtained from segmentation. Obstacles are represented by the estimated visual limits (brown
squares) and by its center (cyan square). The bottom left part of the image is merged within a
single obstacle (surrounded by the red line).



Moreover, in the vision process, there is no information about the position of the robot and thus, from
the vision process point of view, any black blob should be considered. However, we do not need to consider
any obstacle that is outside the field, as it will not interfere with the game.

2.2 Obstacles detection as a sensor fusion problem

To avoid the situation previously described, a new way of determining the obstacles center and limits were
implemented. Thanks to the known relation between pixel anddistance, the relative coordinates of each
point is known and can be made available for the integration process. Changes to the vision algorithm were
made so that now, the position of each detected black point (the first black point on each scanline) is passed
over to the integration process, instead of a visual estimation of the obstacle center and limits. The passed
points are angularly ordered according to the scanlines angular definition.

The integration process takes the points and builds the obstacles. This is made by an iterative process
which starts by acquiring the first black point and define it asthe limits of an obstacle. Iteratively, each black
point is tested to be within a given neighborhood of the previous one. If it is within a given threshold metric
distance, it is added to the currently obstacle being built and is assumed as the left limit. When a black point
appears that does not belong to the neighborhood of the previous, the current obstacle is put on the obstacle
list and a new obstacle is considered, starting with the current black point. After iterating all the points,
the first and last obstacles limits are tested. If they are closer than the threshold, they are part of the same
obstacle, which was divided by the start scanline of the search algorithm and thus they are merged (Alg. 1).

temporaryObstacle.le f tLimit= points[0]
temporaryObstacle.rightLimit = points[0]
for p= 1 to totalNumberO fPoints−1 do

if distance(points[p] , points[p−1])< thresholdthen
temporaryObstacle.le f tLimit= points[p]

else
put temporaryObstacle on obstacle list
temporaryObstacle.le f tLimit= points[p]
temporaryObstacle.rightLimit = points[p]

end if
end for
last= numberO fCreatedObstacles−1
if distance( obstacle[0].rightLimit,obstacle[last].leftLimit ) < thresholdthen

merge limit obstacles
end if

Alg.1. Algorithm for merging visual points into obstacles.

This algorithm allows obstacles at longer distances to be evaluated in the same way as obstacles near
the robot, without unfitting the threshold definition as was the case with pixel thresholds.

Additionally, since at the integration level the robot already knows its location, we can easily eliminate
the black field borders or any other obstacle on the field vicinity by ignoring the obstacles that are outside the
field by more than a given distance threshold. Having precision on the obstacle positions is very important
for the next step of obstacle treatment, which is their selection and classification as team mates or opponents,
described in Section 3.

In the same situation depicted in Figure 5, this new approachwould visually provide all the points
represented in Figure 6a),b) by the yellow squares and the result of the algorithm on the integration process



would consider different obstacles, surrounded in the images by red lines. This separation of obstacles is
more accurate than the previous pixel separation, as the integration process knows the context of the black
points and the individual cartesian coordinates of each one. In our case, the cartesian distances are easier
and more accurate to evaluate than pixel distances.

a) b)

Figure 6: Capture of a camera frame with the new visual information provided by the vision
process. Lefta): Color segmented image; Rightb): Blob image obtained from segmentation. All
the detected valid black points are marked by yellow squares. All these points are provided to the
integration which considers several obstacles (the red lines surround the obstacles created based
on the described algorithm.

Note that the work described in the remaining of this chapteris independent of the vision algorithm, as
long as the described information is available. Several approaches exist concerning obstacle identification.
The work presented in (Lenser & Veloso, 2003) describes an approach for a similar application but with a
non omni-directional vision system. In (Das et al., 2001; Koyasu et al., 2001), visual color and edge based
detection algorithms are described, but both with times toohigh for use in the MSL environment. Other
applications use several other sensors like laser range, stereo cameras or offline setup, but the financial and
space costs of such solutions are much higher (Manduchi et al., 2005; Michels et al., 2005).

3 Obstacle selection and identification

With the objective of refining the information of the obstacles, and have more meaningfull and human
readable information, the obstacles are selected and a cooperative matching is attempted, in order to try to
identify them as team mates or opponents.

Due to the weaker precision at long distances, a first selection of the obstacles is made by selecting
only the obstacles closer than a given distance as availablefor identification (currently 9 meters). Also,
obstacles that are smaller than 10 centimeters wide or outside the field of play margin are ignored. This is
done because the MSL robots are rather big, and in game situations small obstacles are not present inside
the field. Also, it would be pointless to pay attention to obstacles that are outside the field of play, since the



surrounding environment is completely ignorable for the game development.
To be able to distinguish obstacles, to identify which of them are team mates and which are opponent

robots, a fusion between the own visual information of the obstacles and the shared team mates positions
is made. By creating a circle around the team mate positions with the robot radius plus an error margin,
varying with the distance, a matching of the estimated center of visible obstacle within the team mate area is
made (Figure 7), and the obstacle is identified as the corresponding team mate in case of a positive matching
(Figures 8c), 9c)).

Figure 7: When a CAMBADA robot is on, the estimated centers of the detected obstacles are
compared with the shared position of the team mates and tested if they are within the robot radius;
the left obstacle is within the CAMBADA radius, the right oneis not.

Since the obstacles detected can be large blobs, the above described identification algorithm cannot be
applied directly to the visually detected obstacles. If thedetected obstacle fulfills the minimum size requisites
already described, it is selected as candidate for being a robot obstacle. Its size is evaluated and classified
as robot if it does not exceed the maximum size allowed for MSLrobots (MSL Technical Committee, 2010)
(Figure 8a) and 8b)).

If the obstacle exceeds the maximum size of an MSL robot, a division of the obstacle is made, by
analyzing its total size and verifying how many robots are inthat obstacle. This is a common situation, robots
clashing together and thus creating a compact black blob, originating a big obstacle (Figure 9a) and 9b)).



a) b)

c)

Figure 8: Illustration of single obstacles identification. Top Lefta): image acquired from the
robot camera, denoting the single obstacles selected for identification (with lines surrounding
them); Top Rightb): the same image after processing. The same obstacles are also denoted;
Bottomc): image of the control station, where each robot represents itself and theobserver(robot
6, the lighter grey) draws all the 5 obstacles in evaluation conditions (represented by squares
with the same grey scale as itself). All the obstacles correspondent to team mates were correctly
identified (marked by its corresponding number over the obstacle square) and the opponent is also
represented with no number. Note that the positions of the robots visible in the image (each has
its number on the body) is inverted due to the mirrored visionsystem.



a) b)

c)

Figure 9: Illustration of multiple obstacles identification. Top Left a): image acquired from the
robot camera, denoting the obstacles aligned (with a line surrounding it); Top Rightb): the same
image after processing. Visually, the aligned robots are only one large obstacle (marked with its
center with a triangle and side limits with squares); Bottomc): image of the control station, where
each robot represents itself and theobserver(robot 6, the darker grey) draws all the 5 obstacles
(represented by squares with the same grey scale as itself).The visual obstacle was successfully
separated into the several composing obstacles, and all of them were correctly identified as the
correspondent team mate (marked by its corresponding number over the obstacle square) and the
opponent is also represented with no number.



4 Experimental results

The laboratory used for the tests receives natural light which can affect the vision processing algorithms.
The presented results are not treated in any way to diminish the effects of natural light, as we are interested
in understanding if the algorithms can cope with those conditions which can be found in real situations.

In the first test situation, a robot was positioned on the fieldat (−0.05,1.88) while broadcasting its
position. This robot will be referred to aspivot. Another robot was moving on a rectangular path around the
pivot, and a capture of its data was done. This robot will be referred to asobserver. This scenario is intended
to give some insight about the performance of the identification when the team mates are static or nearly
static (as is the case of set plays during the games. In these situations it is important to analyze passing
lines). Figure 10 is a graphic representation of the acquired data, with thepivot represented in black. The
blue dots are the positions of the path taken by theobserver, which covers the rectangular path for 3 times.
In each cycle, the center of the obstacle perceived by theobserveris represented by a red ’x’.

Figure 10: Representation of a capture of the obstacle identification algorithm results. The path
taken by theobserveris represented by blue dots in the rectangular path taken. Near the center,
thepivot shared position is represented by the black star and its limits by the black circle. The
blob of red is the overlapping positions of the identified obstacle center, represented by a red
cross.

It is visible that, as expected, the obstacle position perceived by theobserveris not exactly thepivot
position. The capture in question is composed of 677 cycles.The identification of the obstacle as the
correspondent team mate failed to succeed in only one cycle,which corresponds to a 99.85% success rate.

Considering that thepivot has 22 cm radius (although it is slightly bigger), the mean ofthe centers of



the perceived obstacle is within the real area occupied by thepivot, at nearly 16 cm with a standard deviation
of 10 cm (Table 1).

Perceived obstacle
X Y

Mean 0.05 2.01
Std 0.08 0.07

| ~Real− ~Perceived|= 0.16

|Std|= 0.10

Table 1: Table with the mean and standard deviation of the capture perceived obstacle position

Another test scenario was considered for evaluation of the algorithm performance for moving obstacles.
Several captures were performed to evaluate the performance of the algorithm when identifying a moving
team mate. This set of six captures consisted of a robot observing a team mate moving around and registering
the data about the obstacles. The path taken by the moving team mate is represented in Fig. 11. The number
of failed identifications was greater when the moving robot was farther from theobserver, as expected due
to the noisy nature of the measurements.

The captures were performed throughout the day, with different lighting conditions but with the same
robot calibration. Table 2 summarizes this set of captures,which revealed a total mean identification ratio of
approximately 71%.

Total cycles Successes %
Capture 1 1798 1319 73
Capture 2 1065 748 70
Capture 3 1528 1332 87
Capture 4 1162 769 66
Capture 5 1935 1278 66
Capture 6 2152 1411 66

Table 2: Table with the individual ratio of successful identification of the moving team mate for
the several captures performed.

5 Obstacle sharing

With the purpose of improving the global perception of the team robots, the sharing of locally known infor-
mation is an important feature. Obstacle sharing allows theteam robots to have a more global perception of
the field occupancy, allowing them to estimate, for instance, passing and dribbling corridors more effectively.

However, one have to keep in mind that, mainly due to illumination conditions and eventual reflexive
materials, some of the detected obstacles may not be exactlyrobots, but dark shadowy areas. If that is the



Figure 11: Representation of the path taken by the team mate to identify(the red dots represent
each communicated position). Theobserverposition is represented by the black star and its limits
by the black circle.

case, the simple sharing of obstacles would propagate an eventually false obstacle among the team. Thus the
algorithm for sharing the obstacles makes a fusion of the several team mates information.

The fusion of the information is done mate by mate. After building the worldstate by its own means,
the agent checks all the team mates available, one by one. Their obstacles are matched with the own ones. If
the agent does not know an obstacle shared by the team mate, itkeeps it in a temporary list of unconfirmed
obstacles. This is done to all the team mates obstacles. Whenanother team mate shares a common obstacle,
that same obstacle is confirmed and is transferred to the local list of obstacles. In the current cycle, the
temporary obstacles that were not confirmed are not considered. An outline of the algorithm is presented in
Alg. 2.

The matching of the team mate obstacles with the own obstacles is done in a way similar to the matching
of the obstacle identification with the team mate position described in section 3. The cambadapivot in
Figure 7 is replaced by the current team mate obstacle for thematching test.

Figure 12 shows a situation where robot 2, in the goal area wastoo far to see the obstacle on the middle
of the field. Thus, it considered the obstacle in question, only because it is identified by both robots 5 and 6,
as visible in the figure.



for c= 1 to totalNumberO fTeamMatesdo
for o= 1 to totalObstaclesO fTeamMatedo

for m= 1 to totalOwnObstaclesdo
if m matches othen

Obstacle already known, do nothing
else

if m was previously communicated by another team matethen
temporary obstacle confirmed and added

else
obstacle considered temporarily
waits for confirmation by another team mate

end if
end if

end for
end for

end for
Alg.2. Algorithm for obstacle sharing.

Figure 12: Image of the control station showing an obstacle of robot 2 that was not seen by itself
(on the centre of the field). In this case it assumes the obstacle by confirmation of both robots 5
and 6.

6 Conclusion

The integration of obstacles in the robot representation ofthe world is an important issue for playing the
game. The described treatment of obstacles, used in the lastcompetitions, has been monitored by observation
of the control station. We verified an increase of obstacle detection, stability and coherence among team
mates. The identification of obstacles provided a good tool for pass evaluation, since it allows the strategic



layer to easily verify if the corridor needed for a pass is free of opponents, while ignoring team mate obstacles
near the corridor, as they would not intercept the pass.

Also, one of the main ways we wish to take advantage of the improved obstacle model is the implemen-
tation of a path planning strategy by the strategic layer software.

Improvements are being implemented to allow to create a global and unique identification also for the
opponent robots. This will be achieved by keeping a history of each and every obstacle so it can be tracked,
while making periodic updates of shared information, so allthe robots of the team can synchronize and unify
the identification of their opponents periodicaly.

The new representation of obstacles in the CAMBADA world model has thus been effective and im-
portant to the team performance during the last competitions, but it has also provided the base for more
developments in several areas to allow improvements.
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