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1 Introduction

Within the many existing research domains in the area ofimaliiot systems, robotic soccer is one of the
most popular ones. One of the existing initiatives withie tirea is the RoboCup. The Robo&ip an
international joint project to promote artificial intelégce, robotics and related fields. Most of the RoboCup
leagues have soccer as platform for developing technoditiper at software or hardware levels, with single
or multiple agents, cooperative or competitive (Kitanoletl®97).

Among RoboCup leagues, the Middle Size League (MSL) is ondh@imost challenging, due to its
characteristics in terms of rules and environment. In tségue, each team is composed of up to 5 robots
with maximum size of 50x50cm base, 80cm height and a maximergiw of 40Kg, playing in a field of
18x12m. The rules of the game are similar to the official FIEkes, with required changes to adapt for the
playing robots (MSL Technical Committee, 2010).

Each robot is autonomous and has its own sensorial meanyg.cBhecommunicate among them, and
with an external computer acting as a coach, through a vgsatetwork. This coach computer, however,
cannot have any sensor, it only knows what is reported by ltnérg robots. The agents should be able to
evaluate the state of the world and make decisions suitalfigfil the cooperative team objective.

The work described in this document was accomplished witterMSL context. CAMBADA Cooper-
ative Autonomous Mobile roBots with Advanced Distributechfecture is the MSL Robotic Soccer team
from the University of Aveiro. The project started in 2008pedinated by the IEETAATRI® group and
involves people working on several areas for building thelmaaical structure of the robot, its hardware
architecture and controllers and the software developinegrteas such as image analysis and processing,
sensor and information fusion, reasoning and control.

Being soccer a very dynamic scenario, our robots need to lee@lperceive the other robots around
them, both opponents and the own team mates and need to nieetvely around the field, meaning they
must move (either freely for repositioning or dribling trelbwhile avoiding contact with any other obstacle
on the field, either robot or even the referee.
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Figure 1: Picture of the team robots used to obtain the results predemt this chapter.

For the CAMBADA team to improve its performance during thengs, we felt the necessity to improve
the detection and sharing of obstacles among team matese ®i& make use of team formations, which
keep the robots strategically spread around the field, wi tgignsure a global idea of the field occupancy
for all the team. If we achieve a good cover of the field and ginjthe obstacles inside it, passlines and
dribbling corridors can be estimated more easily allowmglovements on team strategy and coordination.

This is essentially an information fusion problem, as thierimation available from the sensors of
each robot and the shared information must be matched ametdefiThe final result of this fusion is a
representation of the state of the surrounding world. IGA&BADA team, there is an integration process
responsible for that task. It is a step executed after imaghysis and is responsible to take raw information
from the vision and other robot sensors and make a sensonfoesiall sources. For that, it may use the
values stored in the previous representation, the curesrsis measures (possibly after pre-processing) that
has just arrived, the current actuator commands and alsomiation that is available from other robots
sensors or world state.

All the information available from the sensors in the cutreycle is kept in specific data structures
(Figure 2), for posterior fusion and integration, based othlthe current information and the previous state
of the world.

This chapter focuses on the description of the obstacléntesa in the CAMBADA team. In Section
2 a general description of how the obstacles are detecteuebyidgion process is presented, also describing
how the raw information is passed to the integration pracgsstion 3 describes how the raw information is
read and, based only on the local robot information, howdleetification is processed. Section 5 presents
how the sharing and acceptance of team mates obstaclesés 8ection 6 concludes this document.

Note that most of the Figures presented in this chapter aagés) acquired by the omni-directional
camera of the robots. To ensure the comprehension of thedsign most of them, lines were made around
the areas of interest of the image. Also, the triangles andres representing the obstacle centres and limits
inside that areas of interest were increased in size anasityesince the original image capture squares are
more difficult to see in images of the presented size.
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Figure 2: Integrator functionality diagram.

2 Visual obstacle detection

In the CAMBADA team, visual information about the obstadkegathered by the omnidirectional camera.
According to RoboCup rules, the robots are mainly black.c&im a game robots play autonomously, all
obstacles in the field are the robots themselves (and ocadlsithe referee, which is recommended to have
black/dark pants). The CAMBADA vision algorithm takes adtage of this fact and detects the obstacles
by evaluating blobs of black color inside the field of play {&s et al., 2007).

The algorithm for detecting objects in the CAMBADA omni \0si system is based in color segmenta-
tion. Several items of interest are detected based on thkir:cthe green field, the white lines, the black
robots and the defined colored ball. From the center of thgé@nahich corresponds to the center of the
robot, radial sensors are created around the robot, easbrs@presented by a line with a given angle (Fig-
ure 3). These lines are callsdanlinegNeves et al., 2008) and the color of the pixels on them isyaedl,
in search for the defined colors or an undefined one. In theolestcase, the lines are searched for black
color.

2.1 Obstacles detection using only visual information

The detection of black color on the scanlines was analyzdéi ipcangular intervals and length intervals,
to define the limits of each black blob. Since the size of thieaib on the image vary with the distance
to the robot, it is advantageous to know the relation of tlatation. The omni vision system is a non-
SVP hyperbolic catadioptric system. Through an inverstadte map calculation, by exploring a back-
propagation ray-tracing approach and the physical prigseof the mirror surface (Cunha et al., 2008), the
relation between the distances in the image and the distam¢ie real world is known (Figure 4).

Through the function represented in Figure 4, it is possiblereate a normalized relation of blobs
width and length with the distance. Sometimes an obstacéeseparated in several blobs, mainly due to the
noise in the image and problems in color classification, tvked to fails in the detection of black regions in
the scanlines. To avoid these situations, an offset waddenesl to decide when the angular space between
blobs was considered enough to represent a real obsta@deatiep. The same principle was considered
concerning the position of the black area in consecutivelsozs.
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Figure 3: Picture representing an instanceschnlines which work as a mask overlapped with
the segmented camera image. Only the pixels on that maskevilhalyzed.
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Figure 4: Relation between pixels and metric distances of the onettional vision system. The
center of the robot is considered the origin and the metstadces are considered on the ground
plane.

The separation offsets of a blob close to the robot were biggen the ones at a high distance, to
maintain coherent precision. The angular separationtoifas considered for situations where robots were
side-by-side, at the same distance, but there was no vientda between each blob; the length separation
offset was checked for situations where, on sequentialisesnthere were blobs with visual contact but the
robots were actually at different distances. Other detaifsbe found in (Silva et al., 2009).



The results of this approach were very dependent on a poliahdmmction for defining the pixel vari-
ation on the image. In practice it was verified that at highistathces (some tens of pixels from the mirror
border) the offset definition in pixels was not accurate,hesdistance relation tended to very high val-
ues. Since the offset needs to depend on the inter-pixelrdie} when maintaining an acceptably accurate
threshold relation for shorter distances, the offset agjéordistances would not be applicable. This caused
the merging of blobs which were clearly part of differenteatis (Figure 5) or in some situations, caused
clearly segmented obstacles to be ignored.

Figure 5: Capture of a camera frame with an incorrect visual obstaeteation as described.
Top a): Original frame; Bottom Lefb): Color segmented image; Bottom Rigtjt Blob image
obtained from segmentation. Obstacles are representeldebgstimated visual limits (brown
squares) and by its center (cyan square). The bottom leftopdine image is merged within a
single obstacle (surrounded by the red line).



Moreover, in the vision process, there is no informationuaftioe position of the robot and thus, from
the vision process point of view, any black blob should bestagred. However, we do not need to consider
any obstacle that is outside the field, as it will not intezfasith the game.

2.2 Obstacles detection as a sensor fusion problem

To avoid the situation previously described, a new way oédrining the obstacles center and limits were
implemented. Thanks to the known relation between pixel disthnce, the relative coordinates of each
point is known and can be made available for the integratrosgss. Changes to the vision algorithm were
made so that now, the position of each detected black pdiaffiftst black point on each scanline) is passed
over to the integration process, instead of a visual esiimaif the obstacle center and limits. The passed
points are angularly ordered according to the scanlineslandefinition.

The integration process takes the points and builds thedlest This is made by an iterative process
which starts by acquiring the first black point and define thadimits of an obstacle. Iteratively, each black
point is tested to be within a given neighborhood of the presione. If it is within a given threshold metric
distance, it is added to the currently obstacle being bodtia assumed as the left limit. When a black point
appears that does not belong to the neighborhood of thequeuhe current obstacle is put on the obstacle
list and a new obstacle is considered, starting with theeciirblack point. After iterating all the points,
the first and last obstacles limits are tested. If they arserlthan the threshold, they are part of the same
obstacle, which was divided by the start scanline of thectealgorithm and thus they are merged (Alg. 1).

temporaryObstaclée ftLimit = pointg0]
temporaryObstacleightLimit = pointg0]
for p=1tototaINumberO fPoints- 1 do
if distance pointgp], pointgp— 1]) < thresholdthen
temporaryObstaclée ftLimit = pointgp]
else
put temporaryObstacle on obstacle list
temporaryObstaclée ftLimit = pointgp]
temporaryObstacleightLimit = pointgp]
end if
end for
last = numberO fCreated Obstaclesl
if distance( obstacle[0].rightLimit,obstacle[last].l&fmit) < thresholdthen
merge limit obstacles
end if

Alg.1. Algorithm for merging visual points into obstacles.

This algorithm allows obstacles at longer distances to laduated in the same way as obstacles near
the robot, without unfitting the threshold definition as wes tase with pixel thresholds.

Additionally, since at the integration level the robot alilg knows its location, we can easily eliminate
the black field borders or any other obstacle on the field iticby ignoring the obstacles that are outside the
field by more than a given distance threshold. Having precisn the obstacle positions is very important
for the next step of obstacle treatment, which is their sele@nd classification as team mates or opponents,
described in Section 3.

In the same situation depicted in Figure 5, this new appreemhid visually provide all the points
represented in Figure&),b) by the yellow squares and the result of the algorithm on ttegiiation process



would consider different obstacles, surrounded in the @sduy red lines. This separation of obstacles is
more accurate than the previous pixel separation, as thgratton process knows the context of the black
points and the individual cartesian coordinates of each émeur case, the cartesian distances are easier
and more accurate to evaluate than pixel distances.

b)

Figure 6: Capture of a camera frame with the new visual informatiorvigled by the vision
process. Left): Color segmented image; Righ}: Blob image obtained from segmentation. All
the detected valid black points are marked by yellow squakik¢hese points are provided to the
integration which considers several obstacles (the re laurround the obstacles created based
on the described algorithm.

Note that the work described in the remaining of this chaigtérdependent of the vision algorithm, as
long as the described information is available. Severat@hes exist concerning obstacle identification.
The work presented in (Lenser & Veloso, 2003) describes anoagh for a similar application but with a
non omni-directional vision system. In (Das et al., 2001y&su et al., 2001), visual color and edge based
detection algorithms are described, but both with timeshigh for use in the MSL environment. Other
applications use several other sensors like laser rargregostameras or offline setup, but the financial and
space costs of such solutions are much higher (Manduchi &045; Michels et al., 2005).

3 Obstacle selection and identification

With the objective of refining the information of the obstsl and have more meaningfull and human
readable information, the obstacles are selected and &atofe matching is attempted, in order to try to
identify them as team mates or opponents.

Due to the weaker precision at long distances, a first seledi the obstacles is made by selecting
only the obstacles closer than a given distance as availabidentification (currently 9 meters). Also,
obstacles that are smaller than 10 centimeters wide ordautise field of play margin are ignored. This is
done because the MSL robots are rather big, and in gameigitaamall obstacles are not present inside
the field. Also, it would be pointless to pay attention to alotgs that are outside the field of play, since the



surrounding environment is completely ignorable for thegalevelopment.

To be able to distinguish obstacles, to identify which ofnth@re team mates and which are opponent
robots, a fusion between the own visual information of thetatles and the shared team mates positions
is made. By creating a circle around the team mate positidthstive robot radius plus an error margin,
varying with the distance, a matching of the estimated cafteisible obstacle within the team mate area is
made (Figure 7), and the obstacle is identified as the canepg team mate in case of a positive matching

(Figures 8c), 9¢)).
;fimated obstacle center
:Cambada

L4 Estimated obstacle center

/
Other obstacle

Scanlines to cepter of yiewed obstacles

Cambada observer

Figure 7: When a CAMBADA robot is on, the estimated centers of the detkobstacles are
compared with the shared position of the team mates anditésbey are within the robot radius;
the left obstacle is within the CAMBADA radius, the right oisenot.

Since the obstacles detected can be large blobs, the absegbdel identification algorithm cannot be
applied directly to the visually detected obstacles. Ifdbtected obstacle fulfills the minimum size requisites
already described, it is selected as candidate for beinpat mbstacle. Its size is evaluated and classified
as robot if it does not exceed the maximum size allowed for M#lots (MSL Technical Committee, 2010)
(Figure 8a) and 8b)).

If the obstacle exceeds the maximum size of an MSL robot, sidiv of the obstacle is made, by
analyzing its total size and verifying how many robots arhat obstacle. This is a common situation, robots
clashing together and thus creating a compact black bladinating a big obstacle (Figure 9a) and 9b)).
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Figure 8: lllustration of single obstacles identification. Top Left image acquired from the
robot camera, denoting the single obstacles selected émtifctation (with lines surrounding
them); Top Rightb): the same image after processing. The same obstacles ardealsted;
Bottomc): image of the control station, where each robot represtseis and theobserver(robot

6, the lighter grey) draws all the 5 obstacles in evaluationditions (represented by squares
with the same grey scale as itself). All the obstacles cpmedent to team mates were correctly
identified (marked by its corresponding number over theaathstsquare) and the opponentis also
represented with no number. Note that the positions of theteovisible in the image (each has
its number on the body) is inverted due to the mirrored visipstem.
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Figure 9: lllustration of multiple obstacles identification. Top ltef): image acquired from the
robot camera, denoting the obstacles aligned (with a lin@anding it); Top Righb): the same
image after processing. Visually, the aligned robots afg one large obstacle (marked with its
center with a triangle and side limits with squares); Bott)nimage of the control station, where
each robot represents itself and tifeserver(robot 6, the darker grey) draws all the 5 obstacles
(represented by squares with the same grey scale as ifEk#)visual obstacle was successfully
separated into the several composing obstacles, and dileof tvere correctly identified as the
correspondent team mate (marked by its corresponding nusnbethe obstacle square) and the
opponent is also represented with no number.



4 Experimental results

The laboratory used for the tests receives natural lighthvican affect the vision processing algorithms.
The presented results are not treated in any way to dimihisleffects of natural light, as we are interested
in understanding if the algorithms can cope with those doymi which can be found in real situations.

In the first test situation, a robot was positioned on the f&l@d—0.05,1.88) while broadcasting its
position. This robot will be referred to aévot Another robot was moving on a rectangular path around the
pivot, and a capture of its data was done. This robot will be refieldesobserver This scenario is intended
to give some insight about the performance of the identificalvhen the team mates are static or nearly
static (as is the case of set plays during the games. In thiesgi@ns it is important to analyze passing
lines). Figure 10 is a graphic representation of the acdudaa, with thepivot represented in black. The
blue dots are the positions of the path taken byahserverwhich covers the rectangular path for 3 times.
In each cycle, the center of the obstacle perceived bypliservelis represented by a red 'x'.
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Figure 10: Representation of a capture of the obstacle identificatigorighm results. The path
taken by theobserveris represented by blue dots in the rectangular path takear tHe center,
the pivot shared position is represented by the black star and itsslinyi the black circle. The
blob of red is the overlapping positions of the identified tabke center, represented by a red
Cross.

It is visible that, as expected, the obstacle position peedeby theobserveris not exactly thepivot
position. The capture in question is composed of 677 cyclHse identification of the obstacle as the
correspondent team mate failed to succeed in only one aybleh corresponds to a 99.85% success rate.

Considering that theivot has 22 cm radius (although it is slightly bigger), the meathefcenters of



the perceived obstacle is within the real area occupieddpitiot, at nearly 16 cm with a standard deviation
of 10 cm (Table 1).

Perceived obstacle

X Y

Mean 0.05 2.01
Std 0.08 0.07

|Real— Perceived=0.16
IStd = 0.10

Table 1: Table with the mean and standard deviation of the captueeped obstacle position

Another test scenario was considered for evaluation ofltf@ighm performance for moving obstacles.
Several captures were performed to evaluate the perforenainthe algorithm when identifying a moving
team mate. This set of six captures consisted of a robotwbgea team mate moving around and registering
the data about the obstacles. The path taken by the movingrtesde is represented in Fig. 11. The number
of failed identifications was greater when the moving robasvarther from th@bserver as expected due
to the noisy nature of the measurements.

The captures were performed throughout the day, with diffelighting conditions but with the same
robot calibration. Table 2 summarizes this set of captuwrbg;h revealed a total mean identification ratio of
approximately 71%.

Total cycles | Successes %
Capture 1 1798 1319 73
Capture 2 1065 748 70
Capture 3 1528 1332 87
Capture 4 1162 769 66
Capture 5 1935 1278 66
Capture 6 2152 1411 66

Table 2: Table with the individual ratio of successful identificatiof the moving team mate for
the several captures performed.

5 Obstacle sharing

With the purpose of improving the global perception of themterobots, the sharing of locally known infor-
mation is an important feature. Obstacle sharing allowsebm robots to have a more global perception of
the field occupancy, allowing them to estimate, for instapassing and dribbling corridors more effectively.
However, one have to keep in mind that, mainly due to illurtioraconditions and eventual reflexive
materials, some of the detected obstacles may not be exabtys, but dark shadowy areas. If that is the
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Figure 11: Representation of the path taken by the team mate to idgthiéred dots represent
each communicated position). Thbserverposition is represented by the black star and its limits
by the black circle.

case, the simple sharing of obstacles would propagate atumlly false obstacle among the team. Thus the
algorithm for sharing the obstacles makes a fusion of therséteam mates information.

The fusion of the information is done mate by mate. After dinify the worldstate by its own means,
the agent checks all the team mates available, one by oné.olistacles are matched with the own ones. If
the agent does not know an obstacle shared by the team miegepi it in a temporary list of unconfirmed
obstacles. This is done to all the team mates obstacles. Afiwher team mate shares a common obstacle,
that same obstacle is confirmed and is transferred to thé listaf obstacles. In the current cycle, the
temporary obstacles that were not confirmed are not corezidém outline of the algorithm is presented in
Alg. 2.

The matching of the team mate obstacles with the own obsteotione in a way similar to the matching

of the obstacle identification with the team mate positioactibed in section 3. The cambagd&ot in
Figure 7 is replaced by the current team mate obstacle fanttehing test.

Figure 12 shows a situation where robot 2, in the goal aredaeefar to see the obstacle on the middle
of the field. Thus, it considered the obstacle in questioly, bacause it is identified by both robots 5 and 6,
as visible in the figure.



for c= 1 tototalNumberO f TeamMateo
for o =1 tototalObstaclesO f TeamMatio
for m= 1 tototalOwnObstacledo
if m matches ¢hen
Obstacle already known, do nothing
else
if m was previously communicated by another team Itinete
temporary obstacle confirmed and added
else
obstacle considered temporarily
waits for confirmation by another team mate
end if
end if
end for
end for
end for

Alg.2. Algorithm for obstacle sharing.

Figure 12: Image of the control station showing an obstacle of robob2was not seen by itself
(on the centre of the field). In this case it assumes the dedtgoconfirmation of both robots 5
and 6.

6 Conclusion

The integration of obstacles in the robot representatioth@fworld is an important issue for playing the

game. The described treatment of obstacles, used in thmlagtetitions, has been monitored by observation
of the control station. We verified an increase of obstactedmn, stability and coherence among team
mates. The identification of obstacles provided a good wmopéss evaluation, since it allows the strategic



layer to easily verify if the corridor needed for a pass ie foéopponents, while ignoring team mate obstacles
near the corridor, as they would not intercept the pass.

Also, one of the main ways we wish to take advantage of thedwgat obstacle model is the implemen-
tation of a path planning strategy by the strategic layemsot.

Improvements are being implemented to allow to create aaglaid unique identification also for the
opponent robots. This will be achieved by keeping a histéach and every obstacle so it can be tracked,
while making periodic updates of shared information, sthelrobots of the team can synchronize and unify
the identification of their opponents periodicaly.

The new representation of obstacles in the CAMBADA world eldebs thus been effective and im-
portant to the team performance during the last compesitibnt it has also provided the base for more
developments in several areas to allow improvements.
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