
Learning robotic soccer controllers with the Q-Batch
update-rule

João Cunha∗†, Rui Serra∗, Nuno Lau∗†, Luı́s Seabra Lopes∗† and António J. R. Neves∗†
∗Department of Electronics, Telecomunications, and Informatics

University of Aveiro
†Institute of Electronics and Telematics Engineering of Aveiro

University of Aveiro

Abstract—Robotic soccer provides a rich environment for the
development of Reinforcement Learning controllers. The compet-
itive environment imposes strong requirements on performance
of the developed controllers. RL offers a valuable alternative
for the development of efficient controllers while avoiding the
hassle of parameter tuning a hand coded policy. This paper
presents the application of a recently proposed Batch RL update-
rule to learn robotic soccer controllers in the context of the
RoboCup Middle Size League. The Q-Batch update-rule exploits
the episodic structure of the data collection phase of Batch RL
to efficiently evaluate and improve the learned policy. Three
different learning tasks, with increasing difficulty, were developed
and applied on a simulated environment and later on the physical
robot. The performance of the learned controllers is mostly
compared to hand-tuned controllers while some comparisons
with other RL methods were performed. Results show that the
proposed approach is able to learn the tasks in a reduced amount
of time, even outperforming existing hand-coded solutions.

I. INTRODUCTION

The development of efficient robotic controllers is a de-
manding task. Classical approaches involve model-based solu-
tions which require a prior expert knowledge of the system.
Additionally, even in the presence of a reliable model, sensor
and actuactor noise create additional difficulties when fine
tuning a controller. In this context, Reinforcement Learning ap-
proaches emerge as a valuable alternative. Guided by rewards
and penalties the agent is able to learn directly from interacting
with the environment. This greatly reduces the required input
from the developer.

Robotic competitions such as the RoboCup robotic soccer
leagues present a valuable opportunity to apply RL approaches
in a context of an extremely competitive and adversarial
environment. When applying RL methods in robotics, data
efficiency gains extreme importance. As opposed to simulation
scenarios, gathering the interaction data in real world carries
an associated cost. There are often situations during learning
that can result in damage for the environment. Additionally,
if the robot requires too many interactions to learn a task,
the repeated execution of certain actions can result in a
deterioration of the robot physical platform. Generalization is
then a very important aspect of any RL method.

Batch Reinforcement Learning is a class of RL methods
that can be combined with function approximators to achieve
fast and data-efficient learning solutions. Batch Reinforcement
Learning has recently been applied with great success to

learning in physical robotic platforms. This paper presents
some recent developments in this field, namely the application
of Q-Batch, a newly developed update-rule in a number of
learning tasks involving physical robots. The learning tasks
were developed in the context of the CAMBADA project, an
on-going research at the University of Aveiro, which developed
a team of cooperative mobile robots that compete in the
RoboCup Middle Size league.

The remainder of this paper is structured as follows:
Section II presents the main concepts of Batch Reinforcement
Learning. Section III discusses the proposed approach. The
learning tasks developed are discussed Section IV and Sec-
tion V concludes the paper.

II. REINFORCEMENT LEARNING

Reinforcement Learning [1] is a sub-area of Machine
Learning drawing inspiration on biology and animal behavior
learning. Although not a new field of study, it has received
a lot of attention in recent years from researchers worldwide
having sprawled in a multitude of different methods [2], [3].

A class of methods that has showed promising results when
applied to robotics is Batch Reinforcement Learning. Batch
Reinforcement Learning [4] differs from other RL methods
in that it estimates a policy π from a set F composed
of all the N transitions sampled from the environment. A
key characteristic of Batch RL methods is that the value
function is updated synchronously in a global manner by
processing the entire set F in a single step. While purely
online methods, such as Q-Learing, update a Q-function as
soon as a transition is observed, Batch RL methods update a
Q-function once for all state-action pairs in F . To achieve a
synchronous update, a so-called Batch RL operator is applied,
in a kernel fashion, to all collected transitions, generating a
pattern P mapping state-action pairs to the target Q-function
value, P = {(si, ai), Q̄(si, ai)|i = 1, . . . , N}. This presents
an opportunity to apply batch supervised learning methods
to build an approximate Q-function Q̂, through regression.
The approximate Q-function Q̂ is then able to generalize the
obtained return to states not visited in F . Since the update is
synchronous, the function approximator can also be optimized
in a global manner using more sophisticated approaches such
as RProp [5] to obtain a robust approximation.

Among other methods, we highlight the Neural Fitted Q
Iteration (NFQ) [6], an instance of the class of FQI methods,

which relies on multilayer perceptrons, a powerful function
approximator, to represent the approximate Q-function Q̂. NFQ
builds the pattern P by applying a Dynamic Programming
adapted version of the Q-Learning update-rule, over all the
collected transitions:

Q̄(si, ai) = ri + γmax
b
Q̂(s′i, b),∀i ∈ 1..N (1)

where si, ai and s′i are the current state, action chosen and
following state of the ith transition, respectively.

III. Q-BATCH

A common approach on learning tasks using Batch RL
methods involves building the batch incrementally, usually at
the termination of an episode, appending the recently collected
interactions to the existing batch. The batch is then processed
in order to extract an improved policy. The process can then be
repeated alternating data collection and policy improvements
phases until the policy obtained can fulfill the learning task at
hand. Assuming this workflow, then within the same episode
the transitions are sampled along connected trajectories. Each
episode i is then a time consistent sequence of Ti states, actions
and rewards. This representation allows for a more compact
data set F since the following state of a given transition
and the current state of the following transition are now
redundant information, thus we can avoid storing following
states s′ explicitly. Considering the timestep j of episode i, the
corresponding state, action and reward are now represented by
si,j , ai,j and ri,j , respectively.

The Q-Batch [7] update-rule aims to exploit this structure.
Q-Batch attemps to perform a rollout over the trajectory of the
episode. Each rollout is evaluated according to the concept of
n-step returns. This concept builds on the basis that the return
can be calculated from an intermediate number of n steps of
real rewards and the estimated value of the state visited after
n transitions. Therefore a one-step return is based on the first
reward and the value of the state one step later, a two-step
return is based on the two first rewards and the value of the
state two steps later, and so on as shown in (2):

R1
t =rt+1 + γV (st+1)

=rt+1 + γmax
a∈A

Q(st+1, a)

R2
t =rt+1 + γrt+2 + γ2 max

a∈A
Q(st+2, a)

...

Rnt =

n−1∑
i=0

γirt+1+i + γn max
a∈A

Q(st+n, a)

(2)

Instead of trying to find an optimal value for n, which
is data dependent, Q-Batch seeks the rollout that yields the
maximum return, in other words, Q̄ is the maximum n-
step return found. To reduce the computational complexity
the batch is processed in reverse order, taking advantage of
memoization and the recursive relation between maximum n-
step returns, maxk R

k
t = max(R1

t , rt+1 +γmaxk′ R
k′

t+1). The
final Q-Batch update-rule is presented in (3).

Q̄(si,j , ai,j) = max
k

Rkt

= max(R1
t , rt+1 + γmax

k′
Rk
′

t+1)

= max(R1
t , rt+1 + γQ̄(si,j+1, ai,j+1))

= rt+1 + γmax(max
b
Q̂(si,j+1, b), Q̄(si,j+1, ai,j+1))

(3)

IV. LEARNING TASKS

This section presents the developed learning tasks and
discusses the obtained controller performance after the learning
procedure. All the tasks were applied in the Middle Size
League robots of the CAMBADA team. In this league, two
teams composed of 6 robots play on a 18 m × 12 m field.
The environment is structured, with the elements of the game
constituted mainly by uniform colours. The field is green with
white field lines, the ball has a dominant colour (usually orange
or yellow) and the robots are mainly black. Each robot must
not exceed a squared base of 52 cm with a maximum height
of 80 cm. The robots are completely autonomous being the
human-interaction restricted to the human refeere commands
which are relayed to the robots through a control station via
a WiFi network. All sensors of the robots are on-board along
with the computing components. The robots can also share
information with each other and a control station that acts as
a coach.

Each CAMBADA robot, presented in Figure 1, uses a
camera as the main sensor mounted in a catadioptric system,
ensuring a 360 degrees field of view around the robot. This
allows the robot to perceive most of the environment without
requiring the robot to face any particular direction. The robot
moves by means of an omnidirectional drive composed of three
swedish wheels. Additionally the robot possesses an active
mechanism for ball retention.

Fig. 1. A CAMBADA Middle Size League robot.

A key aspect in applying Reinforcement Learning in real
robotics, highlighted by Lauer et. al, is to ensure the Markov
property. Similarly to other approaches [8], in order to cope
with non-neglegible system delays, we predict the state of the
world after the effects of the actuators, to a point where the
current decision being made will take effect [9].

In the design of the learning tasks, an available simulation
environment was used since it allowed for an easier gathering
of data and tuning of the learning parameters. After learning
in simulation, the procedure was repeated in the physical
robots. To learn the different tasks the Neural Fitted Q Iteration
method was applied, using a multilayer perceptron (MLP) to

approximate the Q-Function. MLPs output a smooth approxi-
mation of training target data. With this in mind, throughout
the learning tasks we will apply a smooth reward function,
proposed in [10], that can generate state-action value func-
tions easier to approximate by type of function approximator.
Having defined a target point starget, a region of width δ is
defined around the target where the cost decreases smoothly,
from 95% of a base cost down to 0. The reward function is
defined by (4) and represented in Figure 2. Instead of rewards,
we found it more intuitive to define the learning tasks in terms
of costs. Therefore learned policies will choose the actions that
minize the sum of costs.

r(s, a, s′) = C × tanh2

(
|starget − s| × tanh−1(

√
0.95)

δ

)
(4)

Fig. 2. Smooth reward function used in the learning tasks developed, adapted
from [10].

A. Rotating to a point

The first task defined involves having the robot rotate
over itself to face a given orientation. While far from a great
challenge this presents an opportunity to develop a proof-of-
concept learning task in the CAMBADA team.

To minize the state dimensions and increase generalization,
the problem is defined according to a robot centered coordinate
frame. Since no linear movement is required, the state is a
two-dimensional vector composed of the angular error to the
target, and the robot angular velocity, 〈θe, ω〉. The action set
is composed of angular velocities, in the robot frame. These
are then converted to motor setpoints, using differential inverse
kinematics, in a separate module of the CAMBADA software
architecture. The problem can be simplified if we only pass the
agent the absolute value of its orientation error, and a modified
angular velocity value, where whether it is positive or negative
means that the velocity is directed to the target orientation or
away from it. Additionaly, we also restrict the actions to be
values greater than or equal to zero, so that the actual command
sent to the motors of the robot is always towards minimizing
the orientation error. The action is modified by the signal of the
robot orientation error, meaning that when the orientation error
is greater than zero, the action that is returned by the agent
is applied directly; otherwise, we apply a negative action with
the same magnitude as the one returned. This way, we are able
to reduce the orientation error range from [−π, π] to [0, π]. We
settled for an action set with three actions: [0, π2 , π] rad/s.

In this learning task, we intend to minimize the time it takes
for the robot to face the desired orientation. Not only has the
robot to minimize the orientation error as fast as possible it also
has to actively maintain the error close to zero afterwards. We
are then facing a regularization problem. The reward function
chosen follows (4), with C = 0.01 and δ = 0.1 rad.

1) Learning procedure: For this behavior, we chose to use
a neural network with 3 input neurons, 2 layers of 10 hidden
neurons each, and an output layer of a single neuron. The 3
input neurons account for the 2 state dimensions and 1 action
dimension. The pattern set was approximated with 300 epochs
of the RProp algorithm. The Q-Batch update-rule was applied
with no discounting, that is γ = 1.0. A common technique
applied in the NFQ framework is the addition of hint-to-goal
patterns. These patterns are added to the pattern set P with
output zero, that hint the learning agent to the specified states,
while also helping to clamp the value of the Q̂ close to zero
in these states. The hint to goal heuristic was used, with an
artificial experience set composed by the target state (〈θe =
0, ω = 0〉), repeated 100 times for each action from the action
set.

The learning procedure interleaves phases of experience
gathering with policy evaluation. For every interaction phase,
10 loops of policy evaluation are performed, to speed up the
learning procedure. Each iteration of experience collection is
composed by 10 learning episodes, with each episode lasting
for 100 control cycles. In the CAMBADA platform, a new
control cycle is started every 0.033 seconds, so, since there
are no terminal states, each learning experiment accounts for
around 33 seconds of interaction time. At the start of each
episode a random target orientation is chosen sampled from a
uniform distribuition.

2) Results: This task was applied initially in the simulation
environment. A good controller was found after 38 learning
iterations, which accounts for roughly 14.5 minutes of inter-
action time. While the learned controller is able to reduce
the angular error, the used hand-tuned PD controller is more
robust. We attribute this mainly to the reduced number of
actions and also because, for situations when the orientation
error is small, these are too strong, i.e. the controller is over
actuated. Nonetheless, an acceptable result is achieved. This
goes to show how, even with a less-than-optimal action set,
it is possible to learn a suitable controller. However, if we
were to use this behavior in competition situations, or if our
sole objective was to surpass the performance of the explicitly
coded behavior, we would need to find a better action set. As
this is only a proof-of-concept, we chose to focus our efforts
in the rest of the tasks.

Learning on the real robot lasted for 24 learning iterations,
during which 16800 experience tuples were gathered. This
accounts for around 9 minutes of interaction time. In Figure 3,
we can see a comparison of the absolute orientation error be-
tween the explicitly coded behavior and the learned behavior,
averaged after 10 experiments. Again, we see that the learned
behavior is able to reach the target orientation very quickly.
The robot omniwheels appear to have a very tighter grip on
the field surface, so the robot never overshoots as much as in
the simulated environment.

Since good learning controllers can be obtained with a
relative ease, we took the opportunity to compare the learning
performance of Q-Batch with batch version of Q-Learning, (1).
In order to draw conclusions over their performance, 10 learn-
ing experiments with a maximum of 50 learning iterations,
which interleave one episode of experience collection with one
policy evaluation phase, were carried out for each learning rule.
The results were aggregated and are displayed in Figure 4. As

Fig. 3. Performance comparison between the learning and the hand-coded
controllers in a real environment on the rotating learning task.

we can see, the Q-Batch update rule is faster to achieve a lower
mean cost per cycle. Also, after the first 5 learning iterations,
the average results for Q-Learning were never better than the
average Q-Batch results. This is an interesting observation,
because it shows that Q-Batch can reach better performances
than Q-Learning in short learning times.

Fig. 4. Learning performance over time of the two update-rules used on the
rotating learning task.

B. Dribbling the ball

Dribbling is one of the basic set of skills of a soccer
robot. However to dribble across the field while performing
sharp turns without losing the ball is a very challenging task.
Additionally, the Middle Size League rules stipulate that a
robot may not cover more than a third of the ball, which means
that the contact between the ball and the robot is very small.

In this task, we intend to develop a low-level controller that
is able to dribble a ball in a given direction in the minimum
time possible. While the CAMBADA robots have a dribbling
behaviour, the hand-coded existing solution performs large
turns. The controller has to learn how to perform a sharp turn
without losing the ball. The task is defined as a regularization
problem, this means that after the angular error is close to
zero the robot has to maintain the dribbling heading. This can
be seen as an extension of an existing learning task in the
literature [11].

The state vector of this behavior includes the robot relative
orientation error to the target direction, its relative linear and
angular velocities and a signal indicating whether the ball is
engaged or not. This binary signal is further filtered, so that it
is only negative after five sequential control cycles in which the
ball was perceived as not engaged by the robot. This is because
the robot may lose control of the ball for only one or two
control cycles, but regain control right after. In these situations,
we choose not to punish the agent, and instead consider as if
control of the ball was never lost.

As was described in previous task, we can take advantage
of simmetry in order to reduce the number of actions. In this
behavior, we again only give the agent the absolute value
of the orientation error, and use its sign to modify actions
before they are applied. Actions are 3-tuples consisting of
desired velocity values in the robot coordinate frame, and
follow the form 〈vx, vy, ω〉 , where the y axis points to the
front of the robot. Six actions were defined: 〈0.0, 2.5, 0.0〉,
〈0.0, 2.0, 2.0〉, 〈0.0, 1.5, 2.5〉, 〈1.5, 1.5, 2.5〉, 〈1.0, 1.0, 3.0〉 and
〈−1.0, 1.0, 3.0〉. The actions are later converted to motor
setpoints.

The reward function was designed to have the robot reduce
the heading error as fast as possible without losing the ball. To
achieve this the reward function gives a harsh penalty every
time the robot loses the ball, as presented in (5)

r(s, a, s′) =

{
1 if ball lost

0.01× tanh2(|θe| × tanh−1(
√
0.95)

0.1) otherwise
(5)

1) Learning procedure: In the NFQ framework, the learn-
ing procedure alternates between 15 episodes of interactions
with 10 policy evaluation phases. Each episode lasted for a
maximum of 100 cycles, but would terminate earlier if the
robot lost the ball during the experiment. The neural network
topology used for this behavior consists of 8 input nodes, 2
hidden layers of 20 nodes each and one single output node. The
pattern set was approximated over 300 epochs of the RPROP
algorithm. The Q-Batch update rule was used to generate
the pattern set with a discounting factor of γ = 0.99. An
artifical set of “hint” transition tuples was introduced, with
state 〈θ, vx, vy, ω, engaged〉 = 〈0, 0, 2.5, 0, 1〉, repeating 100
times for each action of the action set, and target output of zero.
At the start of each episode the ball was placed away from the
robot to ensure an initial velocity upon ball possession. After
the ball was engaged, an uniformly random dribbling direction
was chosen signalling a start of experience collection.

2) Results: Learning in the simulated environment was
achieved after 34 iterations. Around 17500 experience tuples
were gathered during learning, which means the controller
was learned under 10 minutes of interaction time. the learned
behavior is much more sharper than the hand-coded one. In
fact, using the learned behavior, the robot is able to rotate
around the ball, even while carrying significant speed. This
way, the robot could complete a full 180 degree turn in less
space.

Learning in the real robot was achieved after 18 learning
iterations. During learning, the robot collected 6535 experi-
ence tuples, which means only a little over 3.5 minutes of
experimentation were needed. The whole learning process took
around 1.5 hours, including batch training, preparation and
execution of learning experiments. Figure 5 shows the perfor-
mance of the learning controller and the hand-coded solution
on the real robot. A square is placed every second on each
trajectory, in order to compare how long each behavior took to
finish the test. As we can see, the learned behavior is sharper,
and was able make a harder turn. Additionally, it achieved
faster speeds after having reached the target orientation, and
completed the test after 134 control cycles. The explicitly
coded behavior, on the other hand, is softer and needs more
space to achieve the same curve, and never moves as fast once

it is facing the target direction. It finished the test after 164
cycles. However the increased speed comes at a cost, since
the learned controller still looses the ball 30% of the time as
opposed to 10% on the hand-coded controller.

Fig. 5. Performance comparison between learning and hand-coded controllers
in a real environment on the driblling learning task. Squares are placed on
each trajectory every second, allowing for a temporal comparison. For each
trial, the robot started close to the (0, -4) position. It then grabbed the ball
and moved forward. The dribbling behavior started after the robot reached an
YY position of greater than -2.5 meters.

C. Receiving a pass

Passes are a very important part of a soccer game. For
robots to succed in performing this task, receiving the ball
efficiently must be achieved. While humans do it naturally,
for a robot this is a very challenging task [12].

Note that the task is not to gain possession of the ball as
quickly as possible, in other words to intercept the ball. To
receive a pass, the robot has to gain control of the ball with
the minimum movement possible. This way a pass can be used
to gain a strategic advantage during a game. The objective of
this behavior is for the robot to position itself in the ball path
and absorb the ball speed upon contact, with the minimum
required movement, so as to not forfeit its current position.
This greatly increases the difficulty of the task. Since what
we are trying to optimize is only the linear movement of the
agent, we chose to delegate the task of facing the ball to a
PID, thus simplifying the problem.

After careful analysis of the problem, it becomes obvious
that we can reduce the state space if instead of considering
a global coordinate frame, we consider a coordinate frame
centered on the ball with the XX axis pointing towards the
movement of the ball. If the ball stops the XX axis points
towards the robot. The final formulation of the state vector
includes 6 features: the ball speed, robot position (x,y), robot
velocity (x,y) and the number of control cycles the ball
is engaged. We also take advantage of simmetry along the
XX axis of the coordinate frame, allowing to represent the
component YY of the robot position in absolute values and
the same component of the robot velocity to indicate if it is
pointing towards the ball path or not.

The fact that we model the problem by considering coordi-

nates as being in the axis of movement of the ball allows us to
simplify actions and reduce the size of the action set. Actions
are defined to be two dimensional vectors of the form 〈vx, vy〉,
which correspond to target velocity values in the specified
coordinate frame. This means that actions should have the
same effect regardless of the orientation of the robot, thus
taking advantage of the CAMBADA holonomic motion. The
action set includes 6 actions: 〈0, 0〉, 〈0,−1〉, 〈1, 0〉, 〈1,−1〉,
〈0,−0.5〉 and 〈1,−0.5〉. Positive vx actions move the robot
away from the ball along its path to absorb the ball incoming
velocity, and negative vy actions move the robot towards the
ball path.

The reward function encodes a series of penalties that are
combined to give rise to the reception of the ball. We provide
a penalty according to YY component of the robot position,
py , to force the robot onto the ball path as soon as possible. To
prevent the movement of the robot along the axis of the ball
movement, a penalty is added according to the robot velocity
in XX component, vx. A constant term is added to force the
robot to move if the ball stops. Additionally to ensure that the
robot attemps to get the ball, a large penalty is given if the
ball moves too far away from the robot, px < −0.5, where
we consider that the pass has failed. If the ball is engaged for
more than 5 cycles no penalty is given. The overall reward
function is presented in (6).

r(s, a, s′) =

0 ball received
1 if ball lost
0.01 + ry + rx otherwise

ry = 0.01× tanh2
(
|py| × tanh−1(

√
0.95)

0.1

)
rx = 0.01× tanh2

(
|vx| × tanh−1(

√
0.95)

0.1

) (6)

1) Learning procedure: To learn this behaviour, the robot
collects experiences in sets of 10 episodes, each with a
maximum of 100 control cycles. An episode ends sooner if
the ball is lost or caught. After the interaction phase ended, 10
iterations of policy evaluation were performed. The Q-Batch
update rule was used to generate pattern sets, with a discount
factor of γ = 1.0. The pattern set was approximated over 300
RPROP epochs. The neural network used to approximate the
Q-function has 8 input nodes, 2 hidden layers of 20 nodes each
and an output layer with a single node.

Learning in the simulator allowed for a controlled repeata-
bility of the experiments. During learning the robot positioned
in the center of the field and with the ball placed randomly,
being the initial distance between them no less than 4 meters
and no greater than 6 meters. The ball starts moving to a target
location, which is determined randomly around the robot,
being at most 1 meter away from it. This way, we try to
reproduce situations where the passer produces a somewhat
inaccurate kick. We allow for some control cycles to pass
before starting the actual learning episode, to reduce noisy
measurements of the ball velocity.

Learning in the real platform presented more challenges. To
allow for some repeatability, the ball was rolled down a ramp
at different heights to ensure different initial ball velocities.
Similarly to the simulated environment, the ball was thrown

at different directions around the robot to ensure a robust ball
reception controller.

2) Results: Using the simulator, 34 learning iterations were
needed for a good control policy to be obtained. The learning
agent needed less than 9 minutes of interaction time, and a
total number of gathered experience tuples close to around
16000. The hand-coded behaviour is able to receive 80% of
the passes performed. The learning behaviour is only able to
capture 50% of the passes.

In the real platform, a suitable policy was obtained after 28
learning iterations. This amounted to close to 12 minutes of
interaction time, during which 21303 experience tuples were
collected. The actual time involved, including preparation and
off-line Q-function approximation, was around 2 hours.

The learned solution outperforms the existing hand-coded
solution, when receiving passes on the real platform. While
the hand-coded solution is only able to receive 10% of the
passes, the learned controller was able to receive 50% of the
performed passes. This is mostly justified by the amount of
noise present in the ball velocity estimation, to which the hand-
coded solution seems to be more susceptible.

Figure 6 presents a comparison of the performance of the
two controllers. For a better visualization, squares and circles
are placed on the robot and ball trajectories, respectively, every
third of a second. Also, circles with a dark outline represent the
ball under the control of the robot. As it is visible, the learned
behavior is faster to move its final position, where it grabs
the ball safely. The hand-coded behavior, on the other hand,
starts by moving sideways, but then changes the direction of its
movement and starts backing up. In this trial, the hand-coded
behavior failed to grab the ball, as it was not aligned with its
trajectory at the moment of impact.

Fig. 6. Comparison of the hand-coded and the learned behavior when
receiving a pass. Both the robot and the ball trajectories are marked with
squares and circles every third of a second. A circle with a black outline
signifies the robot has grabbed the ball. The receiving behavior was enabled
shortly after the robot detected that the ball started moving.

V. CONCLUSION

This paper presents the application of the Q-Batch update-
rule in the context of learning in robotic soccer. This represents
the first application of this update-rule in real robotics. Three

tasks were developed, with increasing difficulty. The design
of the learning tasks is described, with a focus on hardware
abstraction, allowing other teams to implement the tasks on
different platforms. The tasks were applied on simulation and
the real platform. However a focus was given to learning on
the real platform where better results were obtained.

The successful application of the Q-Batch update-rule
opens up opportunities for the development of benchmarks
to evaluate the learning performance against other learning
methods. Additionally, this work represents the first application
of RL methods in the CAMBADA team, allowing for further
research in this field on the on-going project.

ACKNOWLEDGMENTS

This work was supported by project Cloud Thinking
(funded by the QREN Mais Centro program, ref. CENTRO-
07-ST24-FEDER-002031).

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge (MA): MIT Press, 1998.

[2] M. A. Wiering and M. van Otterlo, Eds., Reinforcement Learning: State
of the Art, ser. Adaptation, Learning, and Optimization. Springer, 2012,
vol. 12.

[3] C. Szepesvári, Algorithms for Reinforcement Learning, ser. Synthesis
Lectures on Artificial Intelligence and Machine Learning, R. J. Brach-
man and T. G. Dietterich, Eds. Morgan & Claypool, 2010.

[4] S. Lange, T. Gabel, and M. Riedmiller, “Batch Reinforcement Learn-
ing,” in Reinforcement Learning: State of the Art, M. Wiering and
M. van Otterlo, Eds. Springer, 2012, ch. 2, pp. 45–74.

[5] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backropagation learning: the RPROP algorithm,” in Proceedings of the
IEEE International Conference on Neural Networks, H. Ruspini, Ed.,
San Francisco, CA, 1993, pp. 586–591.

[6] M. Riedmiller, “Neural fitted Q iteration–first experiences with a data
efficient neural reinforcement learning method,” in Proc. of the Euro-
pean Conference on Machine Learning, ser. Lecture Notes in Computer
Science, J. Gama, R. Camacho, P. Brazdil, A. Jorge, and L. Torgo, Eds.,
vol. 3720. Porto, Portugal: Springer, 2005, pp. 317–328.

[7] J. Cunha, N. Lau, and A. J. R. Neves, “Q-Batch: initial results with a
novel update rule for Batch Reinforcement Learning,” in Advances in
Artificial Intelligence - Local Proceedings, XVI Portuguese Conference
on Artificial Intelligence, Azores, Portugal, September 2013, pp. 240–
251.

[8] M. Lauer, S. Langue, and M. Riedmiller, “Motion estimation of mov-
ing objects for autonomous mobile robots,” in Kunstliche Intelligenz,
vol. 20, no. 1, 2006, pp. 11–17.

[9] J. Cunha, N. Lau, J. M. O. S. Rodrigues, B. Cunha, and J. L.
Azevedo, “Predictive Control for Behavior Generation of Omni-
Directional Robots,” in Progress in Artificial Intelligence, 14th Por-
tuguese Conference on Artificial Intelligence, ser. Lecture Notes in
Artificial Intelligence, vol. 5816. Aveiro, Portugal: Springer-Verlag
Berlin / Heidelberg, October 12-15 2009, pp. 275–286.

[10] R. Hafner and M. Riedmiller, “Reinforcement learning in feedback
control,” Machine Learning, vol. 84, pp. 137–169, 2011.

[11] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, “Reinforcement
learning for robot soccer,” Autonomous Robots, vol. 27, no. 1, pp. 55–
73, May 2009.

[12] G. Corrente, J. Cunha, R. Sequeira, and N. Lau, “Cooperative Robotics:
Passes in Robotic Soccer,” in Proceedings of 13th International Confer-
ence on Autonomous Robot Systems and Competitions, Lisbon, Portugal,
April 2013, pp. 82–87.

	Introduction
	Reinforcement Learning
	Q-Batch
	Learning Tasks
	Rotating to a point
	Learning procedure
	Results

	Dribbling the ball
	Learning procedure
	Results

	Receiving a pass
	Learning procedure
	Results

	Conclusion
	References

