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Abstract. The detection of the ball when it is not on the ground is
an important research line within the Middle Size League of RoboCup.
A correct detection of airborne balls is particularly important for goal
keepers, since shots to goal are usually made that way. To tackle this
problem on the CAMBADA team , we installed a perspective camera
on the robot. This paper presents an analysis of the scenario and as-
sumptions about the use of a single perspective camera for the purpose
of 3D ball perception. The algorithm is based on physical properties of
the perspective vision system and an heuristic that relates the size and
position of the ball detected in the image and its position in the space
relative to the camera. Regarding the ball detection, we attempt an ap-
proach based on a hybrid process of color segmentation to select regions
of interest and statistical analysis of a global shape context histogram.
This analysis attempts to classify the candidates as round or not round.
Preliminary results are presented regarding the ball detection approach
that confirms its effectiveness in uncontrolled environments. Moreover,
experimental results are also presented for the ball position estimation
and a sensor fusion proposal is described to merge the information of the
ball into the worldstate of the robot.

1 Introduction

In the context of the Middle Size League (MSL) of RoboCup where the ball
is shot through the air when the robots try to score goals, it is important to
have some estimation of the ball path when it is in the air.

The CAMBADA team robots are equipped with an omnidirectional vision
system which is capable of detecting the ball when it is on the ground, but fails
to detect the ball as soon as it goes higher than themselves. In this paper, we
present a new proposal to achieve a perception of the ball on the air using a
single perspective camera, installed in the robots.

To achieve this objective, we explore the physical properties of the vision
system and the correspondent geometric approximations to relate the position
of the detected ball on the image and its position over the field. The ball detection
is based on a hybrid approach. This approach is based on color segmentation for



Region Of Interest (ROI) selection and subsequent global shape context analysis
for circularity estimation.

In section 2, the problem is briefly exposed and some related work overviewed.
Section 3 describes the used vision system and section 4 presents the detection
and estimation of ball candidates on the image. In section 5, the algorithm
for estimating the position of the ball candidates on the space in front of the
camera is presented and section 6 introduces some guidelines for the integration
of information from both the cameras of the robots. Section 7 presents a brief
comment on the work. Finally, in section 8, some final remarks are presented as
future guidelines for this problem.

2 Problem statement and related work

The work presented in this document is focused on the perception of a ball
in a robotic soccer scenario. The soccer ball to detect is a size 5 FIFA ball,
which has approximately 22 cm of diameter. According to the rules, it has a
known predominant color for each tournament. Most teams take advantage of
this restriction while the ball is on the ground, since in that case, the environment
is very controlled (green floor with some white lines and black robots) and the
ball candidates can be expected to be surrounded by this reduced set of colors.
In the air, these restrictions are completely lost and thus the approach should
be more shape based. The existing shape based approaches are mainly aiming
at detecting a ball through shape on the omnidirectional camera.

Several teams already presented preliminary work on 3D ball detection using
information from several sources, either two cameras or other robots information
[1,2]. However, these approaches rely on the ball being visible by more than one
source at the same time, either two cameras with overlapping visible areas or
two robots, and then triangulate it. This is not possible if the ball is above the
robot omnidirectional camera.

Regarding the detection of arbitrary balls, the MSL league is the most ad-
vanced one. Many of the algorithms proposed during previous research work
showed promising results but, unfortunately, in some of them, the processing
time do not allow its use during a game, being in some cases over one second
per video frame [3].

Hanek et al. [4] proposed a Contracting Curve Density algorithm to recognize
the ball without color labeling. This algorithm fits parametric curve models to
the image data by using local criteria based on local image statistics to separate
adjacent regions. The author claims that this method can extract the contour
of the ball even in cluttered environments under different illumination, but the
vague position of the ball should be known in advance. The global detection
cannot be realized by this method.

Treptow et al. [5] proposed a method for detecting and tracking the ball in
a RoboCup scenario without the need for color information. It uses Haar-like
features trained by an adaboost algorithm to get a colorless representation of
the ball. Tracking is performed by a particle filter. The author claims that the



algorithm is able to track the ball with 25 fps using images with a resolution of
320×240 pixels. However, the training process is too complex and the algorithm
cannot perform in real time for images with higher resolutions. Moreover, the
results still show the detection of some false positives.

Mitri et al. [6] presented a scheme for color invariant ball detection, in which
the edged filtered images serve as the input of an Adaboost learning procedure
that constructs a cascade of classification and regression trees. This method can
detect different soccer balls in different environments, but the false positive rate
is high when there are other round objects in the environment.

Lu et al. [7] considered that the ball on the field can be approximated by
an ellipse. They scan the color variation to search for the possible major and
minor axes of the ellipse, using radial and rotary scanning, respectively. A ball is
considered if the middle points of a possible major axis and a possible minor axis
are very close to each other in the image. However, this method has a processing
time that can achieve 150 ms if the tracking algorithm fails.

More recently, Neves et al. [8] proposed an algorithm based on the use of
an edge detector, followed by the circular Hough transform and a validation
algorithm. The average processing time of this approach was approximately 15
ms. However, to use this approach in real time it is necessary to know the size
of the ball along the image, which is simple when considering the ground plane
in a omnidirectional vision system. This is not the case when the ball is in the
air, in a completely unknown environment without any defined plane.

3 The Perspective camera

The used camera contains a CCD of 6.26×5.01mm and pixel size 3.75µm.
The maximum resolution is 1296×964 and the used lens has a 4mm focal length.
The camera is fixed to the robot in such a way that the axis normal to the CCD
plane is parallel to the ground (Fig. 1).

Fig. 1. Illustration of the perspective camera positioning on the robot. It is placed in
such a way that the camera focal axis is parallel to the ground and the focal point is
slightly displaced from the robot center axis.

Based on the CCD size and the focal length, we can derive the opening
angle, both along the horizontal and vertical axis. We will use α to identify the
horizontal opening angle and β to identify the vertical opening angle.



Given α and β, we can also estimate the theoretical relation of the field
of view (FOV) of the camera at different distances (these calculations do not
take into account any distortion that may be caused by the lens). For a given
distance, we can then estimate the width of the plane parallel to the camera
CCD (as illustrated in Fig. 2) by:

tan(α) =
1

2

hFOV

Y
⇒ hFOV = 2× Y × tan(α) (1)

where hFOV is the width of the FOV plane and Y is the distance of the
FOV plane to the camera focal point.

For the height of the same plane, the analysis is similar in every way, now
considering the ccd height and a β angle.

Fig. 2. Scheme of the relation between the CCD width and focal length with the open-
ing angle. The geometric relation is used for estimating the FOV at a given distance.

Due to the position of the camera relative on the robot, the analysis of the
FOV and associated geometric characteristics of the camera image have a more
direct application. The idea of this application is to provide an approximation
of the ball position mainly when it is in the air. The camera captures the images
using format7, which allows to use the full resolution of the camera to capture
the images but also allows to get and use only a specific ROI. For the objectives
of the described work, we opted to use the full horizontal size of the image, while
the vertical size was cropped to the first 500 lines. This value was defined to cope
with the choice that the camera is used to detect aerial balls and thus it only
needs the image above the horizon line. Since the maximum vertical resolution
is 964, we use the top of the image, with a small margin.

4 Ball visual detection and validation

Our proposal to detect ball candidates in the air is to use a hybrid approach of
color segmentation and statistical analysis of a global shape context histogram.



On a first phase, and since the ball main color is known, a color segmentation
of the image is made in order to obtain blobs of the ball color. This is achieved
by a horizontal scan of the image rows. On each row, the ball color is detected
and a blob is built row by row. The generated blobs have some properties which
are immediately analyzed. Based on thresholds for minimum size and solidity
of the blob convex hull, each solid blob is selected as a candidate for ball while
blobs with very low values of solidity are discarded. An image of the ROI with
the blob is created (Fig. 3b). The method to calibrate the colors and camera
parameters is the same as the one used for the team omnidirectional camera and
is described in [9].

These images are then analyzed by a modified global shape context classifier
[10]. Each image is pre-processed with an edge detector and a polar histogram
is created. This histogram is then statistically analyzed and returns a measure
of circularity of the candidate. The edges image is divided in n layers and m
angles, creating the polar histogram, as defined in [11]. The analysis of the
histogram is made layer by layer, covering all the angles. An estimation of the
average number of edge points on each slice and its standard deviation allows a
rough discrimination between circular and non-circular contours, as exemplified
in Fig. 3c. A ratio of edge points is also part of the statistics of the candidate.

a) b) c)

Fig. 3. a): image from the camera with a ROI around the ball, which is the portion
of the image used for the histogram analysis; b): the ROI created based on the corre-
spondent color blob; c): rough representation of the polar histogram. The histogram
creation fits its radius with the outer points of the edge image, which is not fully rep-
resented in these pictures. Left : A perfect circular edge on the polar histogram would
look something like this. All the edge points are on the same layer and each of its slices
have a similar number of points; Right : A square on the polar histogram. Due to the
fitting properties of the histogram itself, the square edge points should be divided in
more than one layer, which would not yield good statistics as circles.

The previously described step always returns the layer with the best statis-
tics, which is currently the layer that has higher average value with minimum
standard deviation (the maximum difference between average and standard de-
viation). This should represent the layer with the most consistent number of
edge pixels and thus should be the rounder layer. The next step must then
select which of these statistics make sense. Currently, three characteristics are
analysed:



– The ratio of edge points on the layer must be within a given range. This
range was empirically estimated through testing of several examples of ball
and no ball candidates.

– The order of magnitude of the mean should be greater than or equal to the
order of magnitude of the standard deviation.

– The candidate diameter estimated by color segmentation and the diameter
estimated by the classifier must be coherent. Since the radius of the his-
togram is dependent on the number of layers, the coherence between the
measures is dependent on an error margin based on the histogram radius.

4.1 Experimental results

Some experiments were performed by throwing the ball through the air from
a position approximately 6 meters away from the camera and in its direction. In
the acquired videos the ball is always present and performs a single lob shot.

As expected, since the ball is moving almost directly to the camera, the
variation of the ball center column on the image is very small (Fig. 4). The row
of the ball center, however, was expected to vary. Initially the ball was being
held low on the image (meaning the row of the image was a high value) and as
it was thrown, it was expected that it went up on the image, then down again.
Fig. 4 allows us to verify that this behavior was also observed as expected.

On the other hand, since the ball is coming closer to the camera every frame,
it was also expectable that its size on the image would be constantly growing.
The correct evaluation of the width of the ball is important for the position
estimation described in the next section.

Fig. 4. Results from the image analysis of a ball being thrown in the camera direction:
values of the row (Blue dots) and column (Red stars) where the ball center was detected
on the image.

The main contribution of this color/shape hybrid approach, however, is the
reliability of the acquired data, respecting the real time constraints of the ap-
plication. A test scenario was created, where the ball was thrown in such a way
that it was visible in every frame of the videos, and several runs were made.
Although the results are strongly affected by the environment around the ball,



we obtained promising preliminary results with relatively high precision, even if
the recall has shown lower results. A pure color approach yielded better results
in a very controlled environment, but in a more uncontrolled environment we
obtained a very low precision. We consider that having a higher precision is more
advantageous, even when facing the loss of some recall. The processing time for
the algorithm was 11.9± 2.8 ms which is still within our time restrictions.

5 Ball position estimation

After having the candidates selected as balls, there is the need to estimate
their position. To accomplish that, we first analyze the candidate radius in pixels.
The size that each pixel represents at each distance increases with distance to
the camera focal point. This is due to the fact that the resolution is constant
but the FOV is not. With the FOV width relation, we can estimate the size
that each pixel represents at each given distance, by a relation of the estimated
distance and the horizontal resolution:

pS =
hFOV

hR
(2)

and thus, since we know that the ball has 0.22m, we can estimate the number
of pixel expected for the blob width at a given distance:

pW =
0.22

pS
(3)

where pS is the pixel size in the plane with the defined horizontal FOV(hFOV ),
hR is the CCD horizontal resolution and pW is the expected ball width, in pixels,
for the plane with the given pixel size.

For the same setpoint distances as before the ball width, in pixels, was esti-
mated. Table 1 presents those results.

Distance to camera 1 2 3 4 5 6 7 8 9

Expected ball width 182 91 61 46 36 30 26 23 20

Table 1. Table with the theoretical ball width at several distances. Distances are in
meters, ball width are in pixels.

From this analysis, Equation 3 can be developed using Equations 2 and 1:

pW =
0.22× hR
hFOV

=
0.22× hR

2× Y × tan(α)
(4)

from which we get an inverse relation function of pixel width pW and distance
to camera focal point Y .

Given the known distance of the ball candidate, which is our YY coordinate,
and the linear relation of the pixel size, we can estimate the XX coordinate.



This is true due to the camera positioning on the robot that, besides having
the focal axis parallel to the ground, it is also coincident with the robot YY
axis. To accomplish the estimation of the XX coordinate we have to analyze the
horizontal pixel coordinate of the ball center from the image center and apply
the calculated pixel size.

We can thus obtain the XX and YY coordinates of the ball on the ground
plane, relative to the perspective camera, from which we know the relative co-
ordinates from the center of the robot.

5.1 Experimental results

An experimental analysis was performed to verify the relation between the
detected ball width in pixels and the distance it is from the camera.

Unfortunately, and like most practical scenario, it was verified that the ex-
pected theoretical values of the ball pixel width according to the distance was
not verified in practice. To verify the ball width according to the distance from
it to the camera, an experimental setup was mounted.

The experiment was performed by placing the camera with its axis along a
field line and placing the ball in front of it. The ball was on top off a support,
which maintained ball height, and was placed at the several setpoint distances
from the camera (from one to nine meters). These distances were measured with
tape and used as ground truth data. The ball pixel width was measured by
manually stopping the video at frames corresponding to the setpoint distances
and verifying the estimate width of the detected ball. The results are presented
in Table 2.

Distance to camera 1 2 3 4 5 6 7 8 9

Measured ball width 200 110 72 52 42 32 28 22 16

Table 2. Table with the measured ball width at several distances. Distances are in
meters, ball width are in pixels.

Based on the values for the relation between the ball pixel width and the
distance to camera, a 3rd degree polynomial function is used to, given a ball
blob’s width, estimate its distance to camera (the YY coordinate). This relation
is slightly different from the theoretical relation presented in Equation 4, due to
factors like lens distortion that were not accounted in the previous analysis.

To make an approximation for this data, we can estimate a polynomial func-
tion that, given a pixel width of a given candidate, returns the distance at which
that candidate is from the camera. To keep computational time affordable, we
do not wish to have high degree polynomial functions, and thus we tested the fit
of functions up to 4th degree, and verified that a 3rd degree function would fit
the data acceptably. However, the function behavior at shorter distances is not
proper (Fig. 5a).

For that reason, and given the short distances, a linear approximation of the
data would fit the correspondent data in a better way. Fig. 5b represents the



two polynomial functions considered. The used separation point was empirically
estimated.

a) b)

Fig. 5. Left a): Third degree polynomial (red line) fitting the defined experimental
setpoints (blue dots). Although the polynomial function fits acceptably for sizes cor-
responding to distances above 2 meters, closer distances sizes do not seem to evolve
according to the same curve; Right b): Third degree polynomial function (red line)
fitting the defined experimental setpoints (blue dots) and linear polynomial function
(green dashed) for the sizes corresponding to closer distances.

In the same experiment of throwing the ball from 6 meters away from the
camera, described in Section 4.1, the results of the positions evaluated by the
previously described algorithm were captured. Fig. 6 depicts these results. The
path formed by the estimated XY positions approximates the path of the ball
arc through the air, projected on the ground. This data allows a robot equipped
with such camera to estimate the path of the incoming airborne ball and place
itself in front of the ball, for defending in the case of the goal keeper. Given the
nature of the task, there is no need for an excellent precision on the estimations,
just a general direction which provides the target for the robot. The perspective
vision process, from capture to the production of the XX and YY coordinates
took an average time of around 12.5 ms to execute in a computer with an Intel
Core 2 duo at 2.0 GHz. The tests were made for the perspective camera process
running standalone at 30 frames per second.

6 Ball integration

Being the ball the main element of a soccer game, its information is very
important and needs to be as precise as possible. Failure on its detection can
have very negative impact on the team performance. Probably even worse than
failing to detect the ball (situation on which the robots can strategically move in
search for it) is the identification of false positives on the ball. This can deviate
the attention of a robot or even the entire team from the real ball, which can be
catastrophic. To avoid false positives and keep coherence on the information of
the ball, several contextual details are taken into account.



Fig. 6. Picture of a data capture of a ball kicking test. The ball was thrown by the air
from a position around (-0.5, 6.0) in the approximate direction of the camera (which
is the origin of the referential). The blue dots represent the estimated ball positions.

Given the several possible sources of information, the priority for ball posi-
tion is the omnidirectional camera. Details about the visual ball detection and
validation on the omnidirectional camera can be found in [9]. The next source to
use is the shared information between team mates, because if they see the ball
on the ground, there is no need to check the perspective camera information.
Finally, the agent tries to fit the information from the perspective camera into
the worldstate (Fig. 7). This is an improvement of the integration algorithm for
the ball position information presented in [12].

Fig. 7. Ball integration diagram.

At this point, the visual information is a list of candidates that can be the
ball.

The validation of a perspective ball candidate depends on some context of
its detection, based on the analysis of information known at this point:

– The first analysis to make is whether the ball candidate is inside the field or
not. If it is outside the field of play, there is no need to use it, since even if
it is truly the ball, the game would be stopped.

– To maintain coherence between the perspective vision ball and the omni
vision ball, an analysis of the last omni camera ball positions is made and a
perspective candidate is considered only if the this candidate position is in



a given vicinity of the omni camera ball position. Since we are interested in
getting the general ball path, the angular difference is the measure considered
for defining this vicinity. A candidate from the perspective camera is only
accepted if the difference to the last omni camera ball position is below a
given threshold. This validation is performed on the first detections by the
frontal camera, when the ball has also just became or is becoming not visible
for the omni directional camera.

– Another filtering that is done is an analysis of the number of cycles with the
ball visible on the perspective camera. Again, the objective of the perspective
camera is to detect aerial balls. During the game, the ball leaves the ground
only on short periods. When a kick raises the ball, it will inevitably be in
the air for only a few instants, which can be periodic if the ball bounces
several times, but still the appearances are short. A ball constantly detected
for more than a given amount of time is then discarded, since it is probably a
false positive or, for instance, a stop game situation and the referee is holding
the ball on his hands.

7 Conclusions

This paper presents a new approach for aerial ball perception based on the
use of a single perspective camera. This approach is based on three main steps,
the visual ball detection followed by an estimation of the ball position based on
a geometric analysis of the vision system and finally a sensor fusion approach of
this information with other sources of information.

The hybrid approach for visual detection of the ball uses a fast color seg-
mentation based algorithm combined with the application of a polar histogram
analysis. Although a pure shape based algorithm could provide more accurate
results, the fact that this application has real-time restrictions, lead us to include
the color segmentation based algorithm to reduce the shape analysis to limited
small size ROIs.

8 Future work

The initial analysis of the performance of this approach showed that there
are some limitations to its use on a real game scenario, mainly due to the fact
that the object of interest, the ball, moves at a very high speed. In many frames
of a video capture, it is verified that the distortion blur is very high and thus,
the shape analysis is compromised, forcing us to wide the range of detection,
thus lowering the effectiveness of the algorithm.

As future approaches, we intent to explore two scenarios to try to deal with
this problem:

– to export and use the detection approach on high speed cameras, which
would probably provide us frames with a reduced blur effect (even if we
could/should not process all the frames)

– to try a new approach based on 3D Kinect camera to detect aerial objects.
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