
Q-Batch: initial results with a novel update rule for
Batch Reinforcement Learning

João Cunha, Nuno Lau, and António J. R. Neves

DETI/IEETA - University of Aveiro
Campo de Santiago

3810-193 Aveiro, Portugal
{joao.cunha,nunolau,an}@ua.pt,

Abstract. Batch Reinforcement Learning has established itself as a valuable al-
ternative to develop learning and adaptive agents. Batch Reinforcement Learn-
ing algorithms are characterized by obtaining a policy from a set of collected
data. Common methods apply adapted versions of RL update rules, such as Q-
Learning, on the transitions of the batch, building a pattern set. The target values
of the pattern represent a value function, which is latter “fitted” with a function
approximator using batch supervised learning methods. This paper presents the
first results with a novel update rule, Q-Batch. The proposed method is bench-
marked against the batch version of Q-Learning and Watkins Q(λ) in the Neural
Fitted Q Iteration framework. The proposed work is tested in the Predator-Prey
simulated environment. Empirical results show that the proposed method is able
to achieve comparable or better asymptotical performance while requiring fewer
interactions with the environment.

1 Introduction

Reinforcement Learning [15] is a sub-area of Machine Learning drawing inspiration
on biology and animal behaviour learning. Although not a new field of study, it has
received a lot of attention in recent years from researchers worldwide having sprawled
in a multitude of different methods [19, 16].

Reinforcement Learning is usually formalized using a Markov Decision Process
(MDP). MDPs are defined by the tuple 〈S,A, P,R〉: a state set S, an action set A,
a probability distribution model of the system dynamics P (s′|s, a) and an immediate
reward function R(s, a, s′). In every time step t the agent is in a state st ∈ S and takes
an action at ∈ A. In the following time step t+1 the agent observes a transition to state
st+1 and collects a reward rt+1. The key goal of Reinforcement Learning is to find an
optimal policy π, that maximizes the cumulative sum of rewards, or the return at time
t, Rt =

∑+∞
k=0 γ

krt+k+1, with a discount factor γ ∈ [0, 1].
In this work we will focus on value function based methods. As the name implies

these methods find policies by first estimating value functions. We will further focus
on methods estimating Q-functions since these methods are able to cope with situations
where a model of the environment is not available or is too complex to sample from.
The most common update rule to estimate a Q-function, is Q-Learning [18], which is
defined by:



Q(st, at) =α(rt+1 + γmax
b
Q(st+1, b))+

(1− α)Q(st, at)
(1)

Having estimated a Q-function, it is straightforward to obtain a policy, π(s) =
arg maxaQ(s, a).

Common employed methods able to estimate value functions are guaranteed to con-
verge to the optimal policy if all the states (or state-action pairs) are visited infinitely
often. This is a major drawback in physical or real-world systems where the interac-
tion with the environment may be rather costly. On the other hand, convergence is only
guaranteed if the value function is represented by a table which limits the applicability
of these methods to discrete state spaces.

A class of methods that aim to address the shortcomings highlighted before is Batch
Reinforcement Learning. A famous method among this class of methods is the Fitted
Q Iteration (FQI) [3] on which other methods are inspired. FQI can be regarded as
Q-Learning for Batch Reinforcement Learning. However it seems counter-intuitive to
apply Q-Learning, an online and transition based update rule, when Batch Reinforce-
ment Learning methods have a (sometimes rather large) set of experiences available.
However, the application of episodic update-rules such as Monte-Carlo policy evalu-
ation limits the reusability of the existing batch. In this paper we aim to improve the
learning time of FQI methods, by introducing a novel update-rule, Q-Batch, that is able
to estimate a Q-Function in an episodic manner while maintaining data reusability.

The remainder of this paper is structured as follows: Section 2 briefly presents the
basic concepts of Batch Reinforcement Learning. Section 3 introduces our proposed
approach. Section 4 presents the testing environment and the conducted experiments.
Section 5 discusses the obtained results and section 6 draws the conclusions of our
contribution.

2 Batch Reinforcement Learning

Batch Reinforcement Learning [8] differs from other RL methods in that it estimates
a policy π from a set F of N transitions sampled from the environment. Batch Rein-
forcement Learning is sub-divided in two problems. In the first, N , the size of the batch
is fixed, giving rise to the the Fixed Batch Problem. In this setting no assumptions can
be made from the policy used to build the set F . The transitions can be sampled from
arbitrary policies and are not guaranteed to be sampled from connected trajectories.

On the other hand, Batch RL methods can estimate policies while interacting with
the environment, solving the Growing Batch Problem. As the name implies the size
of F increases as the learning agent alternates between an interaction phase, sampling
experience from the environment, and a learning phase, determining the best policy
from the collected data. This allows control over the sampling process generating F .

A notable feature that characterizes Batch RL methods is synchronous update. While
purely online methods, such as (1), update a Q-function as soon as a transition is ob-
served, Batch RL methods update a Q-function once for all state-action pairs in F . To



achieve a synchronous update, a so-called Batch RL operator is applied, in a kernel
fashion, to all collected transitions, generating a pattern P mapping state-action pairs
to the target Q-function value, P = {(si, ai), Q̄(si, ai)|i = 1, . . . , N}. This presents
an opportunity to apply batch supervised learning methods to generate an approximate
Q-function Q̂, combining function approximators and P as a training set, through re-
gression.

Among other methods, we highlight the Neural Fitted Q Iteration (NFQ) [12], an
instance of the class of FQI methods, which relies on multilayer perceptrons, a powerful
function approximator, to represent the approximate Q-function Q̂. Additionally, NFQ
applies batch supervised learning approaches, such as RPROP [13], which are more
sophisticated than simple gradient descent techniques.

NFQ builds the pattern P by applying a Dynamic Programming adapted version of
the Temporal Difference Q-Learning update rule (1), over all the collected transitions:

Q̄(si, ai) = ri + γmax
b
Q̂(s′i, b),∀i ∈ 1..N (2)

where si, ai and s′i are the current state, action chosen and following state of the ith

transition, respectively.
A careful analysis of (2) reveals that it is equal to (1) with maximum learning rate,

α = 1. While the learning rate is omitted, the stochastic approximation is solved by
minimizing the squared error during the approximation phase, effectively yielding an
expected return.

Figure 1 represents the execution flow of FQI methods: the Interaction, Pattern Gen-
eration and Supervised Learning modules can be implemented differently to realize
different Fitted Iterations. The work presented here focuses on the Pattern Generation
module. A complete and detailed discussion of Batch Reinforcement Learning is out of
the scope of this paper. For more details, we refer interested readers to [8] and [14].

3 Q-Batch

While in the Fixed Batch Problem no assumptions can be made about the connectivity
of the transitions in F , in the Growing Batch Problem, the most current Q-function is
used to derive a policy, which is in turn used to interact with the environment. It is then
safe to assume that we can sample from the environment along connected trajectories.
With this assumption, we can quickly realise that an update rule such as (2) is not the
most efficient to apply in such situation. For one, the method only uses immediate infor-
mation (the reward and the Q-value in the following state) although it has information
available about the effect of its actions along a trajectory.

To have a sense of the value of such information, consider the following situation.
We have a randomly initialized Q-Function Q̂ and luckily we are able to sample from an
informed policy, a near-optimal policy that is able to generate near optimal trajectories.
Although this is a very uncommon situation, where we would have such a policy at
the initial stages of learning, it serves to show that after having sampled trajectories,
and applying (2), we would need to repeat the fitting process possibly many times, in a



Fig. 1. The Batch Reinforcement Learning framework, adapted from [4]. The framework is di-
vided in three distinct modules: sampling experience from the environment, generating a pattern
set from the collected experience and batch supervised learning to train a function approximator
that represents the value function.

similar manner to Experience Replay [9], in order to propagate back the values all the
way from the end of the trajectory to the initial states of the trajectory.

It might be tempting to apply a Monte-Carlo update rule based on trajectory roll-
outs [17] such as (3), since we could easily propagate the value on the final states to the
initial states within an episode.

Q̂(si, ai) = Ri,∀i ∈ [1, N ] (3)

However we need to keep in mind that these kind of update rules don’t bootstrap.
The consequence is that since the Q-value does not depend on an estimate of the Q-
function, data collected can only be used to determine the current Q-function and must
be discarded afterwards. Considering that applications of Batch RL involve real world
physical systems, discarding collected data is highly undesirable.

In order to develop a more efficient Batch RL operator, we first start by rearranging
the structure of data set F , with the assumption that transitions are sampled along con-
nected trajectories. The basis of the proposed structure are the episodes. The set F is
now composed ofN episodes. Each episode i is a time consistent sequence of Ti states,
actions and rewards. This representation allows for a more compact data set F since
the following state of a given transition and the current state of the following transition
are now redundant information, thus we can avoid storing following states s′ explicitly.
Considering the timestep j of episode i, the corresponding state, action and reward are
now represented by si,j , ai,j and ri,j , respectively.

Rewards can also be removed from the data set F altogether. Since the evaluation
of a value function is performed offline, with regards to the interaction with the envi-
ronment, and it is reasonable to assume that for many applications, the reward function,
R(s, a, s′), is known, the immediate rewards can be calculated during the application
of the update-rule. This features two main advantages: not only it allows for a more
compact data set F , an advantage considering that the number of collected trajectories
can grow to a large number on long-term autonomy applications, but also by recalcu-
lating the rewards, the data set F can be reused for different, but similar, learning tasks.
Here we support a point of view that in a Reinforcement Learning context, the reward
function is the most succinct description of a learning task [10]. Therefore using a pre-



viously collected F and changing the reward function to learn a different task is not
only perfectly reasonable, but a valuable asset in real world applications.

A well known approach to unify Temporal Difference and Monte-Carlo methods is
the application of eligibility traces [15]. An eligibility trace can be regarded as a tempo-
rary record of the occurrence of a transition. When performing a backup, eligible tran-
sitions propagate a fraction of the observed rewards towards the state being evaluated.
While this concept has been extended to the off-policy case, such as Watkins’ Q(λ) and
Peng’s Q(λ) [11], both variants rely on the existence of a policy, considered the current
optimal policy, to propagate the eligible rewards. However before a close-to-optimal
policy is obtained it may happen that some “good” rewards will not be propagated,
which would accelerate convergence to the optimal policy faster.

Instead, we recover Watkins idea of n-step return [18]. It builds on the basis that
the return can be calculated not only by shallow backups, such as TD methods, or full
backups, such as Monte Carlo methods, but from an intermediate number of n steps
of real rewards and the estimated value of the n-th state. Therefore a one-step return is
based on the first reward and the value of the state one step later, a two-step return is
based on the two first rewards and the value of the state two steps later, and so on as
shown in (4).

R1
t =rt+1 + γV (st+1)

=rt+1 + γmax
a∈A

Q(st+1, a)

R2
t =rt+1 + γrt+2 + γ2 max

a∈A
Q(st+2, a)

R3
t =rt+1 + γrt+2 + γ2rt+3 + γ3 max

a∈A
Q(st+3, a)

...

Rn
t =

n−1∑
i=0

γirt+1+i + γn max
a∈A

Q(st+n, a)

(4)

Historically, n-step returns were deprecated over other update rules, since a backup
could only occur after n time steps had passed. In a Batch Reinforcement Learning
context however, it provides a valuable alternative, since all backups are performed
synchronously and all data required to evaluate n-step returns is available in F .

We then propose a novel update rule based on n-step returns applicable to Batch
RL applications, named Q-Batch. Instead of trying to find an optimal value for n, under
Q-Batch, Q̄ is the maximum n-step return found, as shown in (5).

Q̄(si,j , ai,j) = max
k

Rk
i,j

= max
k

(
k−1∑
l=0

(γlri,j+1+l) + γk max
b∈A

Q̂(si,j+k, b)

)
,

∀i ∈ 1..N, ∀j ∈ 1..Ti − 1,∀k ∈ 1..T − j

(5)



where Rk
i,j is the kth observed return in time step j of the episode i.

This allows for an off-policy update-rule that is able to reuse every transition in F
regardless of the policy used in the interaction with the environment. One can easily
observe that from the analysis of (4) that R1

i,j is equal to (2). Therefore if the trajectory
described in episode i is not optimal, in the worst case the maximum n-step return,
found by (5) will be the immediate reward plus the discounted value in the following
state, which is itself an off-policy update rule. Figure 2 presents the Q-Batch backup
diagram.

st,at

st+1

rt+1

at+1
rt+2
st+2

at+2
.
.
.

aT-1
rT
sT

Q(st,at)

Q(st+1,b)

Q(st+2,b)

Q(sT,b)

{
∀b ∈ A

∀b ∈ A

∀b ∈ A

{
{

Fig. 2. Q-Batch backup diagram.

While Q-Batch appears to be an improvement over the application of Q-Learning
like update rules in Batch RL, it also carries an increase in computational costs. One
can clearly conclude that the complexity of (2) is constant, O(1), with respect to the
size of the trajectory. On the other hand, by implementing the sum of the rewards using
Dynamic Programming, the complexity of (5) is linear, O(T). One could argue that,
since the application of Q-Batch is offline during the Pattern Generation module of a
Fitted Iteration, such complexity is not particularly negative. However, as stated before,
the number of collected transitions can grow exponentially, which will harshly degrade
the system with any increase of complexity.

A solution to the increasing size of the data set F , is the application of sampling
methods [2, 6]. These methods are able to sample transitions from F into a representa-
tive distribution of the state space, consequently reducing the number of transitions to
be processed, resulting in shorter training times. However such methods are based on
heuristics, and it is currently unclear which heuristic is best suited to yield a sub-set of



F able to generate policies with a similar performance to the policies trained with the
complete set F .

Luckily, with some modifications, the complexity of (5) can be improved. Initially,
the maximum n-step return can be rewritten in the following recursive form:

max
k

Rk
t = max(R1

t , rt+1 + γmax
k′

Rk′

t+1) (6)

Combining (5) with (6), yields:

Q̄(si,j , ai,j) = max
k

Rk
t

= max(R1
t , rt+1 + γmax

k′
Rk′

t+1)

= max(R1
t , rt+1 + γQ̄(si,j+1, ai,j+1))

= rt+1 + γmax(max
b
Q̂(si,j+1, b), Q̄(si,j+1, ai,j+1))

(7)

Analysing (7), we observe that the target Q-value depends on the next immedi-
ate reward, the approximated maximum Q-value in the following state, and the target
Q-value of the following transition. Considering that all backups are performed syn-
chronously, it is possible to apply Q-Batch in the inverse order for every episode in F ,
thus achieving a constant complexity, comparable to (2).

4 Experiments and Results

To evaluate the performance of Q-Batch, we tested the proposed approach on the Predator-
Prey environment [7]. In this simulated environment, predator agents chase prey agents
in a discrete toroidal world. While the simulator supports the existence of multiple
predators and preys, we will focus the testbed in single agent systems, therefore in all
our tests one predator will learn how to chase and capture a single prey. Both the preda-
tor and prey can move north(up), south(down), east(right), west(left) as well as stay in
the same cell. In every control cycle the predator acts first, and if after the predator ac-
tion, both agents occupy the same cell, the prey is captured and an episode is finished.
Otherwise the prey moves randomly, with a given probability of staying in the same
cell, p(stay), and the remaining actions are chosen with probability 1−p(stay)

4 . Please
note the following exception, if after the predator moves, the agents are in adjacent
cells, the prey will not move onto the cell occupied by the predator. In our tests we used
an environment size of 15× 15. Figure 3 presents the simulated environment used.

As mentioned before, we focused our implementation on the Neural Fitted Q It-
eration framework, which approximates the Q-function with a multilayer perceptron.
However the proposed approach is applicable to other function approximators.

The state vector of the predator agent is composed of the relative position to the
prey, in cartesian coordinates. To maximize the generalization of the neural network,
the actions are coded in the following manner:



Fig. 3. The Predator-Prey environment. The prey is represented by the triangle and the predator
is represented by the circle.

north south east west stay
1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1 0,0,0,0

Given this representation of the learning task, the neural network structure used to
approximate the Q-function is 6-5-1. All different test conditions ran for 1000 NFQ
iterations of interaction with the environment and the neural network was trained with
600 RPROP epochs. A common approach to speed up learning in the NFQ framework
is the addition of artificial patterns (also called hint-to-goal). For this application, arti-
ficial patterns were added with the state (0,0) and target Q-values of 0, thus hinting the
predator to this state. The reward function used in all tests is given by (8). In our imple-
mentation we formulate the reward signal in terms of costs, therefore a positive signal
corresponds to a penalization. Correspondingly, a greedy policy selects the action that
minimizes the value of the Q-function.

R(s, a, s′) =

{
0, s′ = (0, 0)
0.01, else (8)

We strived to test our proposed approach under a number of different conditions.
Firstly we separately tested the approach under a fixed and growing batch setting. Ad-
ditionally we tested the performance with a static prey, p(stay) = 1, and a moving prey
with p(stay) = 0.2. In the growing batch problem, we also tested the effect of exploration
in the performance of the approach, comparing greedy with ε-greedy (ε=0.2) policies.
In all experiments carried out, no discount factor was used, γ = 1.

In the fixed batch problem, the resulting set F of ε-greedy learning tasks is not par-
titioned, but instead used as a whole in the Pattern Generation module in all iterations.
Notice that while a policy is tested no more data is collected. This resembles a Learning
from Demonstration application. A final test was devised where a clearly sub-optimal
policy sampled trajectories of the environment. This policy repeats the same action
along the entire trajectory until the predator captures or the agent revisits the starting
state. The set F is built by sampling trajectories starting in all states of the environment
with all possible actions, visiting the entire state-action space.



To evaluate the performance of an update-rule we measured the asymptotic perfor-
mance, which is the sum of the costs obtained in an episode after the agent has achieved
a near-optimal policy, the number of NFQ iterations as well as the interaction time until
the asymptotic performance was achieved, similarly to the evaluation conducted in [4].

For comparison purposes, in addition to Q-Batch, we tested the batch version of
Q-Learning, (2), and a batch version of Watkins’ Q(λ), with λ = 0.1. Each test con-
figuration was repeated 10 times and averages formed. Table 1 presents the obtained
results for the tests described above.

Table 1. Obtained results in the different test configurations.

Batch
Prey Agent Learning Asymptotic NFQ iterations Interaction

Policy Policy Method Performance to AP Time to AP (s)

Q-Learning 0.076 ± 0.0052 177.9 ± 31.12 39.55 ± 5.67

Greedy Q(λ) 0.086 ± 0.0029 129.7 ± 26.77 31.70 ± 6.50

P(Stay) Q-Batch 0.076 ± 0.0052 130.0 ± 31.83 26.65 ± 7.27

= 1 Q-Learning 0.080 ± 0.0034 160.6 ± 43.78 37.56 ± 9.09

ε-Greedy Q(λ) 0.080 ± 0.0051 134.0 ± 29.32 32.00 ± 6.71

Growing Q-Batch 0.076 ± 0.0034 141.6 ± 34.26 31.90 ± 6.75

Batch Q-Learning 0.096 ± 0.0052 95.1 ± 16.04 21.11 ± 4.20

Greedy Q(λ) 0.095 ± 0.0054 104.6 ± 19.48 26.33 ± 5.07

P(Stay) Q-Batch 0.089 ± 0.0020 105.4 ± 19.29 25.65 ± 4.31

= 0.2 Q-Learning 0.098 ± 0.0068 104.0 ± 19.94 26.37 ± 4.75

ε-Greedy Q(λ) 0.104 ± 0.0068 96.7 ± 27.08 25.81 ± 7.83

Q-Batch 0.096 ± 0.0034 98.4 ± 22.26 24.70 ± 5.53

P(stay)
= 1

Q-Learning 0.083 ± 0.0077 72.6 ± 31.28 14.87 ± 6.80

Fixed Greedy Q(λ) 0.080 ± 0.0040 71.3 ± 21.82 14.51 ± 4.93

ε-greedy Q-Batch 0.078 ± 0.0063 29.7 ± 17.98 5.21 ± 3.16

sampled
P(stay)
= 0.2

Q-Learning 0.123 ± 0.0080 22.0 ± 5.62 5.67 ± 1.46

Batch Greedy Q(λ) 0.123 ± 0.0100 35.67 ± 16.45 9.39 ± 4.58

Q-Batch 0.091 ± 0.0041 9.7 ± 4.35 1.94 ± 0.93

Fixed sub-
optimal Batch

P(stay)
= 1

Q-Learning 0.073 ± 0.0043 63.5 ± 10.82 12.11 ± 2.59

Greedy Q(λ) 0.068 ± 0.0025 61.7 ± 3.77 11.89 ± 1.06

Q-Batch 0.075 ± 0.0040 55.1 ± 16.91 10.12 ± 3.30



5 Discussion

The analysis of the Table 1 shows that Q-Batch achieves a comparable or better per-
formance compared to the other tested update-rules, especially when compared to Q-
Learning. While in some tests the asymptotic performance achieved by both methods is
similar, Q-Batch requires less NFQ iterations and interaction time to achieve the same
level of performance. The exception to this is the last test devised, where the data set F
is fixed and formed by trajectories sampled with a sub-optimal policy. This indicates, as
was expected, that Q-Batch is best applied in the presence of informed policies. These
policies generate trajectories leading to desirable states, where Q-Batch can quickly
propagate rewards to the initial states of the trajectories. This makes Q-Batch specially
suited for Learning from Demonstrarion applications.

We also observe that, in a growing batch, simple exploration strategies do not yield
better results. However, given the argument presented previously, one can expect Q-
Batch to perform better when combined with directed exploration strategies [5] or
heuristics to speed up learning [1]. Moreover, since the developed update-rule is off-
policy, it should not be negatively affected by the employed exploration strategy. This
idea is greatly reinforced by the results obtained in the tests with a fixed batch with tra-
jectories sampled from an ε-greedy policy. Since F contains optimal trajectories from
the early stages of learning, we can clearly observe that rewards are propagated back-
wards along the trajectory much faster than using Q-Learning. Figure 4 presents the
averaged results over ten repeated tests ilustrating the difference in the performance of
the tested methods with a fixed batch with trajectories sampled from an ε-greedy policy,
against a static prey.

Fig. 4. The performance of the tested methods over time, with a fixed batch composed of ε-greedy
trajectories, against a moving prey.



While in the fixed batch tests, the entire data set F was used, which can result in
many repeated patterns, the proposed approach can be combined with sampling method-
ologies to select a more concise and representative set of F . To achieve this goal, sam-
pling methods should sample trajectories, or even partial trajectories, which contain
interesting features of the learning task, to take full advantage of Q-Batch.

6 Conclusions

This paper presented a novel update rule based on n-step returns, particularly well
suited for Batch RL. It presents an improvement over update-rules similar to Q-learning,
which use immediate information, ignoring the fact that in a Batch RL scenario there
is valuable non-immediate information available. This paper also presents a strategy
to reduce the computational complexity of the update-rule minimizing the execution
times. The proposed approach focuses on the Pattern Generation module of the Fit-
ted Q Iteration framework, allowing the application of different function approximators
as well as different batch supervised learning algorithms. Additionally since the de-
veloped update-rule is off-policy, different exploration techniques can be applied. The
sole requirement to apply the proposed approach is to able to sample trajectories from
the environment, instead of transitions (s, a, s′), which offer no guarantee to form con-
nected trajectories. Additionally we propose a reorganization of the data set that stores
the collected experiences, based on episodes and their corresponding trajectories, which
is more compact than current used structures.

While tested on a simulated environment, the initial results are promising. Future
work will involve the application of Q-Batch in more complex and real-world learn-
ing tasks. The authors envision such applications in the context of physical robots, in
learning tasks ranging from robotic soccer to service robotics environments.

Acknowledgments

The authors would like to thank Dr. Martin Riedmiller for his availability to clarify
essential concepts of Batch Reinforcement Learning and Neural Fitted Q Iteration im-
plementation.

This research is funded by FEDER through the Operational Program Competitive-
ness Factors - COMPETE, by National Funds through FCT - Foundation for Science
and Technology in the context of the project FCOMP-01-0124-FEDER-022682 (FCT
reference PEst-C/EEI/UI0127/2011) and project Cloud Thinking (funded by the QREN
Mais Centro program, ref. CENTRO-07-ST24-FEDER-002031).

References

1. Bianchi, R.A.C., Ribeiro, C.H.C., Costa, A.H.R.: Accelerating autonomous learning by using
heuristic selection of actions. Journal of Heuristics 14(2), 135–168 (2008)

2. Ernst, D.: Selecting concise sets of samples for a reinforcement learning agent. In: Pro-
ceedings of the 3rd International Conference on Computational Intelligence, Robotics and
Autonomous Systems. Singapore (10–14 December 2005)



3. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. Journal
of Machine Learning 6, 503–556 (2005), http://orbi.ulg.ac.be/handle/2268/9360

4. Gabel, T., Lutz, C., Riedmiller, M.: Improved neural fitted Q iteration applied to a novel
computer gaming and learning benchmark. In: Proceedings of the IEEE Symposium on Ap-
proximate Dynamic Programming and Reinforcement Learning. pp. 279–286. IEEE Press,
Paris (Apr 2011)

5. Hester, T., Stone, P.: Real Time Targeted Exploration in Large Domains. In: Proceedings of
the 9th International Conference on Development and Learning (ICDL). Ann Arbor, Michi-
gan (Aug 2010)

6. Kietzmann, T.C., Riedmiller, M.: The Neuro Slot Car Racer: Reinforcement Learning in a
Real World Setting. In: Proceedings of the International Conference on Machine Learning
Applications. Springer, Miami, Florida (2009)

7. Kok, J.R., Vlassis, N.: The pursuit domain package. Tech. rep., Informatics Institute, Uni-
versity of Amsterdam, Amsterdam (2003)

8. Lange, S., Gabel, T., Riedmiller, M.: Batch Reinforcement Learning. In: Wiering, M., van
Otterlo, M. (eds.) Reinforcement Learning: State of the Art, chap. 2, pp. 45–74. Springer
(2012)

9. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine Learning 8(3-4), 293–321 (May 1992)

10. Ng, A.Y., Russell, S.J.: Algorithms for Inverse Reinforcement Learning. In: Langley, P. (ed.)
Proceedings of the Seventeenth International Conference on Machine Learning (ICML). pp.
663–670. Morgan Kaufmann, Stanford, California (2000)

11. Precup, D., Sutton, R.S., Singh, S.P.: Eligibility traces for off-policy policy evaluation.
In: Langley, P. (ed.) Proceedings of the Seventeenth International Conference on Machine
Learning. pp. 759–766. Morgan Kaufmann (2000)

12. Riedmiller, M.: Neural fitted Q iteration–first experiences with a data efficient neural re-
inforcement learning method. In: Gama, J.a., Camacho, R., Brazdil, P., Jorge, A., Torgo,
L. (eds.) Proceedings of the European Conference on Machine Learning (ECML). Lecture
Notes in Computer Science, vol. 3720, pp. 317–328. Springer, Porto (2005)

13. Riedmiller, M., Braun, H.: A direct adaptive method for faster backropagation learning: the
RPROP algorithm. In: Ruspini, H. (ed.) Proceedings of the IEEE International Conference
on Neural Networks. pp. 586–591. San Francisco, CA (1993)

14. Riedmiller, M., Gabel, T., Hafner, R., Lange, S.: Reinforcement learning for robot soccer.
Autonomous Robots 27(1), 55–73 (May 2009)

15. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press, Cambridge
(MA) (1998)

16. Szepesvári, C.: Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, Morgan & Claypool (2010)

17. Tesauro, G., Galperin, G.R.: On-line policy improvement using Monte Carlo search. In: Neu-
ral information processing systems (NIPS). pp. 206–221. Denver (1996)

18. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. thesis, University of Cambridge
(1989)

19. Wiering, M.A., van Otterlo, M. (eds.): Reinforcement Learning: State of the Art, Adaptation,
Learning, and Optimization, vol. 12. Springer (2012)


