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a b s t r a c t

When a team of robots is built with the objective of playing soccer, the coordination and control algo-
rithms must reason, decide and actuate based on the current conditions of the robot and its surroundings.
This is where sensor and information fusion techniques appear, providing the means to build an accurate
model of the world around the robot, based on its own limited sensor information and the also limited
information obtained through communication with the team mates. One of the most important elements
of the world model is the robot self-localization, as to be able to decide what to do in an effective way, it
must know its position in the field of play. In this paper, the team localization algorithm is presented
focusing on the integration of visual and compass information. An important element in a soccer game,
perhaps the most important, is the ball. To improve the estimations of the ball position and velocity, two
different techniques have been developed. A study of the visual sensor noise is presented and, according
to this analysis, the resulting noise variation is used to define the parameters of a Kalman filter for ball
position estimation. Moreover, linear regression is used for velocity estimation purposes, both for the ball
and the robot. This implementation of linear regression has an adaptive buffer size so that, on hard devi-
ations from the path (detected using the Kalman filter), the regression converges faster. A team cooper-
ation method based on sharing the ball position is presented. Other important data during the soccer
game is obstacle data. This is an important challenge for cooperation purposes, allowing the improve-
ment of team strategy with ball covering, dribble corridor estimation, pass lines, among other strategic
possibilities. Thus, detecting the obstacles is ceasing to be enough and identifying which obstacles are
team mates and opponents is becoming a need. An approach for this identification is presented, consid-
ering the visual information, the known characteristics of the team robots and shared localization among
team members. The described work was implemented on the CAMBADA team and allowed it to achieve
particularly good performances in the last two years, with a 1st and a 3rd place in the world champion-
ship RoboCup 2008 and RoboCup 2009 editions, respectively, as well as distinctively achieve 1st place in
2008 and 2009 editions of the Portuguese Robotics Open.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, there are several research domains in the area of
multi robot systems. One of the most popular is robotic soccer.
RoboCup1 is an international joint project to promote artificial intel-
ligence, robotics and related fields. Most of the RoboCup leagues
have soccer as platform for developing technology, either at software
or hardware levels, with single or multiple agents, cooperative or
competitive [1].

Among RoboCup leagues, the Middle Size League (MSL) is one of
the most challenging. In this league, each team is composed of up
to five robots with maximum size of 50 � 50 cm base, 80 cm height
and a maximum weight of 40 kg, playing in a field of 18 � 12 m.
ll rights reserved.
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The rules of the game are similar to the official FIFA rules, with re-
quired changes to adapt for the playing robots [2].

Each robot is autonomous and has its own sensorial means.
They can communicate with each other, and with an external com-
puter acting as a coach, through a wireless network. This coach
computer cannot have any sensor, it only knows what is reported
by the playing robots. The agents should be able to evaluate the
state of the world and make decisions suitable to fulfill the cooper-
ative team objective.

CAMBADA, Cooperative Autonomous Mobile roBots with Advanced
Distributed Architecture, is the Middle Size League Robotic Soccer
team from the University of Aveiro. The project started in 2003,
coordinated by the IEETA2 ATRI3 group and involves people working
2 Instituto de Engenharia Electrónica e Telemática de Aveiro – Aveiro’s Institute of
Electronic and Telematic Engineering.

3 Actividade Transversal em Robótica Inteligente – Transverse Activity on Intelli-
gent Robotics.
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Fig. 1. Picture of the team robots used to obtain the results presented on this paper.
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on several areas for building the mechanical structure of the robot,
its hardware architecture and controllers and the software develop-
ment in areas such as image analysis and processing, sensor and
information fusion, reasoning and control (see Fig. 1).

This paper provides a description of some sensor and informa-
tion fusion techniques and algorithms used in the CAMBADA team.
The data obtained by these techniques are necessary for building a
world model of the robot environment. This paper includes the
description of some of the elements of that model necessary for a
team of robots to play soccer. In Section 2, a brief overview of some
related topics and work in sensor and information fusion for world
modeling are presented. Section 3 presents the team self-localiza-
tion description, introducing it as the first necessary step for all the
other information fusion. In Section 4, the ball integration process
is presented in all its components, starting with the ball position,
its velocity and finally its sharing among team mates. Section 5
presents an overview of obstacle treatment, with some visual
detection details, the matching of positions for visual identification
and the sharing of information among team mates. Finally, Section
6 concludes the paper.
2. Related work

World modeling and sensor and information fusion are tightly
related, as the latest provide the means to build the desired model.
Sensor and information fusion is the process of combining sensory
data, or data derived from sensory data, providing a resulting infor-
mation that is better than would be possible when the sources
were used individually [3]. One of the main areas where sensor fu-
sion techniques are used is position tracking, both for self and ob-
ject localization/tracking.

The integration of information over time in order to filter sensor
noise is essential to get better estimates. This type of integration
may be performed using Kalman filter based approaches, Monte
Carlo methods or Markov approaches. Generally, Monte Carlo [4]
approaches have better performance in cases where great discon-
tinuities of the output values are expected, as the assumption of
Gaussian probability density functions of the Kalman filter [5] is
usually less accurate. However, Kalman filtering is a very effective
method if the assumptions of Gaussian noise can be met and the
system can be linearized. Other common approaches are the use
of the Extended and Unscented Kalman filters [6], which are pre-
pared to deal with non-linear systems at the cost of more compu-
tational weight.

A general overview of different methods of multi-sensor and
information fusion is presented in [7], also with a brief description
of application areas, such as robotics, military, biomedical and
transportation. Applications in the robotics field include self-local-
ization using either Kalman filter [8], Monte Carlo [9] or Markov
[10] methods, or integration of information coming from several
robots, to increase the accuracy of each of the robots position esti-
Please cite this article in press as: Silva J et al. World modeling o
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mation [11]. A general recent overview of methods and architec-
tures for multi-sensor data fusion can be found in [12].

Another recurrent problem nowadays is the fusion of visual and
inertial sensors [13], where recent results have demonstrated that
the visual tracking of objects may work at higher velocities and be
more robust if combined with information coming from inertial
sensors [14] and also that ego-motion estimation can be more pre-
cise and navigation more robust using these approaches [15].

Simultaneous Localization And Mapping (SLAM) is another
common application of sensor fusion techniques, as in many cases,
autonomous robots have to map the environment rather than sim-
ply localize themselves [16,17].

Particularly in RoboCup domain, several teams use this kind of
approaches, not only for localization purposes, but also for position
estimation and tracking of objects, namely the ball and other ro-
bots. Several teams have used Kalman filters for the ball position
estimation [18–21]. In [20,21], several information fusion methods
are compared for the integration of the ball position using several
observers. In [21], the authors conclude that the Kalman reset filter
shows the best performance.

Although using well known techniques, in this paper we pro-
pose practical solutions for an efficient self-localization, ball infor-
mation treatment and obstacle treatment for an MSL robotic soccer
team. As far as we know, no previous work has been published
focusing on these several important aspects of developing the
world model of an MSL soccer team.
3. Localization

Self-localization of the agent is an important issue for a soccer
team, as strategic moves and positioning must be defined by posi-
tions on the field. In the MSL, the environment is partially known,
as every agent knows exactly the layout of the game field but does
not know the position of any other elements, either itself, other ro-
bots or the ball. Given the known map, the agent has then to locate
itself.

The CAMBADA team localization algorithm is based on the de-
tected field lines, with fusion of information from the odometry
sensors and an electronic compass. It is based on the approach de-
scribed in [22], with some adaptations. It can be seen as an error
minimization task, with a derived measure of reliability of the cal-
culated position so that a stochastic sensor fusion process can be
applied to increase the estimation accuracy [22].

From the center of the image (the center of the robot), radial
sensors are created around the robot, each one represented by a
line with a given angle. These are called scanlines. The image pro-
cessing, in each cycle, returns a list of positions relative to the robot
where the scanlines intercept the field line markings [23].

The idea is to analyze the detected line points, estimating a po-
sition, and through an error function describe the fitness of the
estimation. This is done by reducing the error of the matching
n an MSL robotic soccer team. Mechatronics (2010), doi:10.1016/
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Fig. 2. Captures of an image acquired by the robot camera and processed by the
vision algorithms. Left (a): The image acquired by the camera. Right (b): The same
image after processing with magenta dots over the detected field lines.

Fig. 3. Illustration of the compass error angle intervals.

Fig. 4. Illustration of two situations where relocation was forced. Dashed line represent
localization algorithm, red lines represent the cycles on which the error between the tw
robot moved. The estimated orientation error degrades progressively and after getting h
robot tilted. The estimated orientation error is immediately affected by more than a thr
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between the detected lines and the known field lines (Fig. 2). The
error function must be defined considering the substantial amount
of noise that affects the detected line points which would distort
the representation estimation [22].

In normal operation mode, the localization is done over a lim-
ited set of base positions from which tracking is maintained. Since
it is an algorithm based on optimization and since there are many
local minima, the tracking only works satisfactorily if the estima-
tions are near the solution. In situations where the robot does
not possess a valid estimation, a global localization algorithm esti-
mates the robot position on the field using a much wider set of ini-
tial estimations over which the already referred error minimization
process for optimization is applied. However, this global localiza-
tion algorithm is computationally heavy and time consuming. For
that reason, after having an initial position, the simpler tracking
localization handles the cyclic relocation.

Although the odometry measurement quality quickly degrades
with time, within the reduced cycle times achieved in the applica-
tion, consecutive readings produce acceptable results and thus,
having the visual estimation, it is fused with the odometry values
to refine the estimation. This fusion is based on a Kalman filter for
the robot position estimated by odometry and the robot position
estimated by visual information. This approach allows the agent
to estimate its position even if no visual information is available.
However, it is not reliable to use only odometry values to estimate
the position for more than a few cycles, as slidings and frictions on
the wheels produce large errors on the estimations in short time.

Due to the nature of the approach, this algorithm works accept-
ably with a relatively low number of points, like a few tens of
points, as long as they are representative of the surroundings. Con-
sider the case of matching a 90 degrees corner. If the algorithm had
access to 200 points all over the same line, it would not be capable
of matching the corner. On the other hand, with only 20 or 30
points scattered over both lines, the algorithm would be capable
s the angle given by the compass, solid line represents the angle estimated by the
o angles is greater than the threshold. Left (a): The camera was covered while the
igher than a threshold, the cycle count starts and forces relocation. Right (b): The

eshold and the cycle count starts and forces relocation.
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of detecting the match. Even in situations where the points are
over the same line, the merging with odometry and position track-
ing provide a good robustness to the algorithm [22], as long as the
situation is temporary, which is usually the case.

The visually estimated orientation can be ambiguous, i.e. each
point on the soccer field has a symmetric position, relatively to
the field center, where the robot detects exactly the same field
lines. To disambiguate the symmetry problem and to detect wrong
estimations, an electronic compass is used. The orientation esti-
mated by the robot is compared to the orientation given by the
compass and if the error between them is larger than a predefined
threshold, actions are taken. If the error is really large (i.e. around
±180 degrees), it means that the robot estimated orientation is
symmetric to the real one, so it should assume the mirror position.
On the other hand, if the error is larger than the acceptance thresh-
old (i.e. a 90 degrees acceptable area), a counter is incremented
(Fig. 3).

This counter will be incremented every cycle in which the error
is greater than the threshold. If a given number of consecutive cy-
cles with high errors is reached (i.e. the counter reaches a given
number, currently 10), the robot considers itself ‘‘lost”, meaning
that it will not continue to track its position but will instead con-
sider the initial situation, with no a priori knowledge and thus exe-
cutes the global localization algorithm. Fig. 4 shows situations
where the threshold was reached and relocation was forced after
some cycles.
4. Ball integration

The information of the ball state (position and velocity) is, per-
haps, the most important, as it is the main object of the game and it
is the base over which most decisions are taken. Thus, its integra-
tion has to be as reliable as possible. To accomplish this, a Kalman
filter implementation was created to filter the estimated ball posi-
tion given by the visual information, and a linear regression was
applied over filtered positions to estimate its velocity.

4.1. Ball position

It is assumed that the ball velocity is constant between cycles.
Although that is not true, due to the short time variations between
cycles, around 40 ms, and given the noisy environment and mea-
surement errors, it is a quite acceptable model for the ball move-
ment. Thus, no friction is considered to affect the ball, and the
model does not include any kind of control over the ball. Therefore,
given the Kalman filter formulation (described in [24]), the as-
sumed state transition model is given by

Xk ¼
1 DT

0 1

� �
Xk�1
Fig. 5. Noisy position of a static ba
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where Xk ¼
Pos
Vel

� �
is the state vector containing the position and

velocity of the ball. Both are composed by the respective (x, y) coor-
dinates. This velocity is only internally estimated by the filter, as the
robot sensors can only take measurements on the ball position.
After defining the state transition model based on the ball move-
ment assumptions described above and the observation model,
the description of the measurements and process noises are impor-
tant issues to attend. The measurements noise can be statistically
estimated by taking measurements of a static ball position at
known distances.

In practice, measurements of the static ball were taken while
the robot was rotating around its vertical axis and this was done
with the ball placed at several distances, measured with metric
tape. Although real game conditions are probably more adverse,
we lack the means to externally know the position of the elements
on the field. For that reason, to know the real distance between the
robot and the ball, we opted to use the described setup. Some of
the results are illustrated in Fig. 5.

The standard deviation of those measurements can be used to
calculate the variance and thus define the measurements noise
parameter.

A relation between the distance of the ball to the robot and the
measurements standard deviation can be modeled by a 2nd degree
polynomial best fitting the data set in a least-squares sense.
Depending on the available data, a polynomial of another degree
could be used, but we should always keep in mind the computa-
tional weight of increasing complexity.

As for the process noise, this is not trivial to estimate, since
there is no way to take independent measurements of the process
to estimate its standard deviation. The process noise is represented
by a matrix containing the covariances correspondent to the state
variable vector.

Based on the Kalman filter functioning, one can verify that forc-
ing a near null process noise causes the filter to practically ignore
the read measures, leading the filter to emphasize the model pre-
diction. This makes it too smooth and therefore inappropriate. On
the other hand, if it is too high, the read measures are taken too
much into account and the filter returns the measures themselves.

To face this situation, one has to find a compromise between
stability and reaction. Since we assume an uniform movement
for the ball, there are no frictions or other external forces consid-
ered. This means that accelerations are not considered in our mod-
el and thus, the position and velocity components are quite
independent of each other. Since acceleration is the main element
of relation between position and velocity, we considered that the
errors associated to the process position and velocity estimations
do not correlate.

Because we assume an uniform movement model that we know
is not the true nature of the system, we know that the speed calcu-
lation of the model is not very accurate. A process noise covariance
ll taken from a rotating robot.
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Fig. 6. Plot of a robot movement around a fixed ball position. The ball positions
measured by the moving robot form a cloud of points (green) in the area of the real
ball position (black X). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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matrix was empirically estimated, based on several tests, so that a
good smoothness/reactivity relationship was kept. These empiri-
cally estimated values were made dependent on the measurement
noise so that the Kalman filter predictions are also less accurate
when the distance to the ball is too large. This was done so that
the filter does not smooth the positions too much.

In practice, this approach proved to improve the estimation of
the ball position. Since we do not possess the means to externally
know the positions of the elements on the field, a capture was
made with the ball fixed at a known position on the field
(0.0, 2.0) (measured with metric tape). The robot was moving
around the ball with a speed of 1.3 ± 0.5 m/s and the ball position
measured at each moment was recorded. The ball position mea-
sured by the robot was (�0.01, 2.03) ± (0.05, 0.06) m. Fig. 6 illus-
trates the capture results.

This experiment gives an idea of the noise associated with the
ball position detection. Note that during the experiment the dis-
tance between the robot and the ball is around 2 m. Comparing
the ball position cloud with the one obtained at 2 m in Fig. 5 one
can verify that they are similar, which is consistent with the previ-
ous experiment setup to simulate robot movement by rotation on
the spot.

With the presented setup experiments, the existence of noise in
ball measurements became clear. With that existent noise in mind,
several tests were made to validate the use of the Kalman filter to
reduce it. Fig. 7 represents a capture of one of those tests, a ball
movement, where the black dots are the ball positions measured
by the robot visual sensors and thus are unfiltered. Red stars4 rep-
resent the position estimations after applying the Kalman filter.
The robot position is represented by the black star in its center
and its respective radius. The ball was thrown against the robot
and deviated accordingly. It is easily perceptible that the unfiltered
positions are affected by much noise and the path of the ball after
the collision is composed of positions that do not make much phys-
ical sense. Although we lack the means to externally provide a
ground truth for the ball position during its movements, the fil-
tered positions seem to give a much better approximation to the
real path taken by the ball, as they provide a path that physically
makes more sense.
4 For interpretation of color in ‘Figs. 1,2,4-7,9-11,13-15,17-20’ the reader is referred
to the web version of this article.
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After producing the a priori estimation of the ball position, this
estimation is compared with the read measure to detect if the var-
iation between them is too great. If the difference between them is
consistently greater than a given threshold (estimated empiri-
cally), the filter can indicate that the ball suffered a hard deviation
(Fig. 8 illustrates this concept).

Although hard deviations are not a serious problem for the filter
(as it quickly converges to the new positions), they are used for
velocity convergence (as described in the next subsection).

4.2. Ball velocity

The calculation of the ball velocity is a feature becoming more
and more important over the time. It allows that better decisions
can be implemented based on the ball speed value and direction.
Assuming the same ball movement model described before, con-
stant ball velocity between cycles and no friction considered, one
could theoretically calculate the ball velocity by simple instanta-
neous velocity of the ball with the first order derivative of each
component DD

DT , being DD the displacement on consecutive mea-
sures and DT the time interval between consecutive measures.
However, given the noisy environment, it is also predictable that
this approach would be greatly affected by that noise and thus
its results would not be satisfactory.

Fig. 9 shows a ball movement capture where the ball was mov-
ing from left to right, as indicated by the arrow in the top of the fig-
ure, and was then deviated into a downward movement near the
‘‘1st deviation” tag. While moving downward, the ball was devi-
ated again near the ‘‘2nd deviation” tag and started to move from
right to left. Finally, in the end of the capture, a new deviation oc-
curred near tag ‘‘3rd deviation” where the ball started to move up-
ward. The estimated ball positions are represented by the blue
dots. Red lines represent the velocity vectors estimated based on
consecutive positions displacement. It is clear that the velocity
estimates hardly give an acceptable insight of the ball movement.

To keep a calculation of the object velocity consistent with its
displacement, an implementation of a linear regression algorithm
was chosen. This approach based on linear regression [25] is sim-
ilar to the velocity estimation described in [18]. By keeping a buffer
of the last m measures of the object position and sampling instant
(in this case buffers of nine samples were used), one can calculate a
regression line to fit the positions of the object. Since the object po-
sition is composed by two coordinates (x, y), we actually have two
linear regression calculations, one for each dimension. This is made
in a transparent way, so the description is presented generally, as if
only one dimension was considered.

When applied over the positions estimation, the linear regres-
sion velocity estimations are much more accurate than the instant
velocities calculated by DD

DT , and allow a better insight of the ball
movement. The same ball movement capture described earlier is
represented in Fig. 10, this time with the velocity vectors estimated
by the linear regression applied over the position estimations pro-
vided by the Kalman filter.

In order to try to make the regression converge more quickly on
deviations of the ball path, a reset feature was implemented. This
allows deletion of the older values, keeping only the n most recent
ones, and provides control of the buffer size. By keeping the most
recent values after a hard deviation, we reduce outliers of the pre-
vious path, thus promoting faster convergence. This reset results
from the interaction with the Kalman filter described earlier by
querying it for the existence of a hard deviation on the ball path.

The obtained values were tested to confirm if the linear regres-
sion of the ball positions was more precise and would converge
faster than the internal velocity estimated by the Kalman filter.
Tests showed that the velocity estimated by the Kalman filter
has a slower response than the linear regression estimation when
n an MSL robotic soccer team. Mechatronics (2010), doi:10.1016/
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Fig. 8. Situation where a hard deviation would be detected by the filter. Positions
R4,5,6, are the measured positions after the ball hits an obstacle, P4,5,6 are the
predicted filtered estimations, which did not consider that something might alter
the ball path.

Fig. 9. Velocity representation using consecutive measures displacement.

Fig. 10. Velocity representation using linear regression over Kalman filtered
positions.

Fig. 7. Plot of a ball movement situation.
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deviations occur. Given this, the linear regression was used to esti-
mate the velocity because quickness of convergence was preferred
over the slightly smoother approximation of the Kalman filter in
the steady state. That is because in the game environment the ball
is very dynamic, it constantly changes its direction and thus a con-
vergence in less than half the cycles is much preferred. Fig. 11
shows the results for a theoretical velocity scenario where the ball
was moving at a constant speed of 2 m/s and suddenly dropped to
Please cite this article in press as: Silva J et al. World modeling o
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a constant 1 m/s speed. Both the speeds estimated by the Kalman
filter and the ones estimated by the linear regression are
presented.

4.3. Team ball position sharing

Due to the highly important role that the ball has in a soccer
game, when a robot cannot detect it by its own visual sensors
(omni or frontal camera), it may still know the position of the ball,
through sharing of that knowledge by the other team mates.

The ball data structure includes a field with the number of cy-
cles it was not visible by the robot, meaning that the ball position
given by the vision sensors can be the ‘‘last seen” position. When
the ball is not visible for more than a given number of cycles, the
robot assumes that it cannot detect the ball on its own. When that
is the case, it uses the information of the ball communicated by the
other running team mates to know where the ball is. This can be
done by getting the mean and standard deviation of the positions
of the ball seen by team mates. Another approach is to simply
use the ball position of the team mate that has more confidence
in the detection.
n an MSL robotic soccer team. Mechatronics (2010), doi:10.1016/
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Fig. 11. Comparison between the velocity estimated by the linear regression (blue solid line, faster convergence) and internally by the Kalman filter (red dashed line,
smoother, but of slow convergence). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Independently of the chosen approach, the robot assumes that
ball position as correct. When detecting the ball on its own, there
is also the need to validate that information.

Currently the seen ball is only considered if it is within a gi-
ven margin inside the field of play as there would be no point
in trying to play with a ball outside the field. For ball position
sharing, an approach based on the highest confidence ball posi-
tion is used. This is due to the fact that the shared positions are
Fig. 12. Diagram of the ball

Please cite this article in press as: Silva J et al. World modeling o
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updated with 100 ms periods, with the possibility of a few
more milliseconds of unknown and unpredictable delay in pack-
et transmission. Thus, the lifetime of the information of each
team mate is different, and the use of the information of the
team mate with higher confidence reduces the probability of
the degradation of that information during the respective life-
time. Fig. 12 illustrates the general ball integration activity
diagram.
integration algorithm.
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5. Obstacle treatment

While playing soccer, the robots have the need to navigate
around the field effectively, which means they have to reposition
themselves or dribble the ball avoiding the obstacles on the field,
that can be either team or opponent robots, or eventually the
referee.

An increasing necessity felt by the team, to improve its perfor-
mance, is a better obstacle detection and sharing of obstacle infor-
mation among team mates. This is important to ensure a global
idea of the field occupancy, since the team formation usually keeps
the robots spread across the field. Pass lines and dribbling corridors
can be estimated more easily with a good coverage of field obsta-
cles, allowing improvements on team strategy and coordination.

5.1. Visual obstacle detection

The CAMBADA robots gather their information about the sur-
roundings by means of a robotic vision system. Currently, only
the omni directional camera gathers information about obstacles,
as no frontal camera is being used at this time.

According to RoboCup rules, the robots are mainly black. Since
during the game robots play autonomously, all obstacles in the
Fig. 13. Captures of an image acquired by the robot camera and processed by the
vision algorithms. The areas of interest were surrounded. (a) The image acquired by
the camera. (b) The same image after processing. Obstacles are identified by their
center (triangle), left and right limits (squares). It is visible that the two aligned
obstacles are detected as a single larger obstacle (top right of the frames).

Fig. 14. Relation between pixels and metric distances. The center of the robot is con
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field are the robots themselves (occasionally the referee, which is
recommended to wear black/dark pants). The vision algorithm de-
tects the obstacles by evaluating blobs of black color inside the
field of play [26]. Through the mapping of image positions to real
metric positions [27], obstacles are identified by their center (tri-
angle on the processed image, Fig. 13b) and left and right limits
(squares on the processed image, Fig. 13b). This is done by search-
ing black regions on the scanlines of the vision algorithm [23], al-
ready referred in Section 3.

The detection of black color on the scanlines is analyzed both in
angular intervals and length intervals, to define the limits of each
black blob (considering their base points which are represented
by the first black pixel in each scanline). Since the vision system
is a non-SVP hyperbolic catadioptric system [27], the size of objects
on the image varies with the distance to the robot. Due to an in-
verse distance map calculation, by exploring a back-propagation
ray-tracing approach and the geometric properties of the mirror
surface, the relation of distances in the image and the real world
is known. Fig. 14 is an illustration of how the distance in pixels,
from the center of the image, is mapped to the distance in meters,
on the ground plane.

Through the function represented in Fig. 14, it is possible to cre-
ate a normalized relation of blobs width and length with the dis-
tance. Sometimes an obstacle is separated in several blobs,
mainly due to the noise in the image and problems in color classi-
fication, which leads to failure in the detection of black regions in
the scanlines. To avoid these situations, an offset is considered to
decide when the angular space between blobs is considered en-
ough to represent a real obstacle separation. The same principle
is considered concerning the position of the black area in consecu-
tive scanlines.

The separation offsets of a blob close to the robot are bigger
than the ones at a high distance, to maintain coherent precision.
The angular separation offset is considered for situations where ro-
bots are side-by-side, at the same distance, but there is no visual
contact between each blob; the length separation offset is checked
for situations where, on consecutive scanlines, there are blobs with
visual contact but the robots are actually at different distances.
Both situations are depicted in Fig. 15.
sidered the origin and the metric distances are considered on the ground plane.
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Fig. 15. Example of an image acquired by the robot camera and processed by the
vision algorithm. The areas of interest are surrounded. (a) The image acquired by
the camera. (b) The same image after processing. It is visible the two possibilities of
separation made: angular separation, on the bottom pair of obstacles and length
separation, on the top pair of obstacles.

Fig. 16. When a CAMBADA robot is on, the estimated centers of the detected
obstacles are compared with the known position of the team mates and tested; the
left obstacle is within the CAMBADA acceptance radius, the right one is not.

Fig. 17. Illustration of single obstacles identification. (a) Image acquired from the
robot camera (obstacles for identification are marked). (b) The same image after
processing. (c) Image of the control station. Each robot represents itself and robot 6
(the lighter gray) draws all the five obstacles evaluated (squares with the same gray
scale as itself). All team mates were correctly identified (marked by its corre-
sponding number over the obstacle square) and the opponent is also represented
with no number.
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For each detected blob, their number of pixels is calculated and
an estimation of the obstacles left and right limits, as well as their
centers, is made. This information is made available to the integra-
tion process for filtering and treatment.

5.2. Obstacle selection and identification

With the objective of refining the information of the obstacles,
and have more meaningful and human readable information, the
obstacles are selected and a matching is attempted, in order to
try to identify them as team mates or opponents.

Due to the weak precision at long distances, a first selection of
the obstacles is made by selecting only the obstacles closer than a
given distance as available for identification (currently 5 m). Also,
obstacles that are smaller than 10 cm wide or outside the field of
play margin are ignored. This is done because the MSL robots are
rather big, and in-game situations small obstacles are not present
inside the field. Also, it would be pointless to pay attention to
obstacles that are outside the field of play, since the surrounding
environment is completely ignorable for the game development.

To be able to distinguish obstacles, identifying which of them
are team mates and which are opponent robots, a fusion between
the own visual information of the obstacles and the shared team
mates positions is made. By creating a circle around the team mate
positions with the robot radius (considered 22 cm), a matching of
the estimated center of visible obstacle area is made (Fig. 16),
and the obstacle is identified as the corresponding team mate in
case of a positive matching (Figs. 17c and 18c). This matching con-
sists on the existence of interception points between the team
mate circle and the obstacle circle or if the obstacle center is inside
the team mate circle (the obstacle circle can be smaller, and thus
no interception points would exist).

Since the detected obstacles can be large blobs, the above de-
scribed identification algorithm cannot be applied directly to the
visually detected obstacles. If the detected obstacle fulfills the min-
imum size requisites already described, it is selected as candidate
for being a robot obstacle. Its size is evaluated and classified as ro-
bot if it does not exceed the maximum size allowed for MSL robots
[2] (Fig. 17a and b).

If the obstacle exceeds the maximum size of an MSL robot, a
division of the obstacle is made, by analyzing its total size which
is used to estimate how many robots are in that obstacle. This
may be a common situation, robots clashing together and thus cre-
ating a compact black blob, originating a big obstacle if they are
sufficiently lined up (Fig. 18a and b).

Although the computations for obstacle identification were in
use during RoboCup 2009, their results are yet to be considered
in the team strategy. Currently, obstacles are always considered
unfriendly and thus to be avoided. Due to this fact, there is cur-
rently no data of in-game results for this part of the work.
Please cite this article in press as: Silva J et al. World modeling o
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Several captures of the obstacle identification algorithm de-
scribed earlier were performed and analyzed, to further illustrate
the effectiveness of the algorithm. The laboratory used for the tests
receives natural light which can affect the vision processing
algorithms. The presented results are not treated in any way to
diminish the effects of natural light, as we are interested in under-
standing if the algorithms can cope with those conditions which
can be found in real situations.

In the first test situation, a robot was positioned on the field at
(�0.05, 1.88) while broadcasting its position. This robot will be re-
ferred to as pivot. Another robot was moving on a rectangular path
around the pivot, and a capture of its data was done. This robot will
be referred to as observer. This scenario is intended to give some in-
sight about the performance of the identification when the team
mates are static or nearly static (as is the case of set plays during
the games. In these situations it is important to analyze passing
lines). Fig. 19 is a graphic representation of the acquired data, with
the pivot represented in black. The blue dots are the positions of
the path taken by the observer, which covers the rectangular path
n an MSL robotic soccer team. Mechatronics (2010), doi:10.1016/
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Fig. 18. Illustration of multiple obstacles identification. (a) Image acquired from the
robot camera (obstacle for identification marked). (b) The same image after
processing. Visually, the aligned robots are only one large obstacle. (c) Image of the
control station. Each robot represents itself and robot 6 (the darker gray) draws all
the five obstacles (squares with the same gray scale as itself). The visual obstacle
was successfully separated into the several composing obstacles, and all of them
were correctly identified as the correspondent team mate (marked by its
corresponding number over the obstacle square) and the opponent is also
represented with no number.

Fig. 19. Representation of a capture of the obstacle identification algorithm results.
The path taken by the observer is represented by blue dots in the rectangular path
taken. Near the center, the pivot shared position is represented by the black star and
its limits by the black circle. The blob of red is the overlapping positions of the
identified obstacle center, represented by a red cross. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1
The mean and standard deviation of the capture perceived obstacle position.

Perceived obstacle

X Y

Mean 0.05 2.01
Std 0.08 0.07

jReal � perceivedj = 0.16.
jStdj = 0.10.

Fig. 20. Representation of the path taken by the team mate to identify (the red dots
represent each communicated position). The observer position is represented by
the black star and its limits by the black circle. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 2
The individual ratio of successful identification of the moving team mate for the
several captures performed.

Total cycles Successes %

Capture 1 1798 1319 73
Capture 2 1065 748 70
Capture 3 1528 1332 87
Capture 4 1162 769 66
Capture 5 1935 1278 66
Capture 6 2152 1411 66
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for three times. In each cycle, the center of the obstacle perceived
by the observer is represented by a red ‘�’.

It is visible that, as expected, the obstacle position perceived by
the observer is not exactly the pivot position. The capture in ques-
tion is composed of 677 cycles. The identification of the obstacle as
the correspondent team mate failed to succeed in only one cycle,
which corresponds to a 99.85% success rate.
Please cite this article in press as: Silva J et al. World modeling o
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Considering that the pivot has 22 cm radius (although it is
slightly bigger), the mean of the centers of the perceived obstacle
is within the real area occupied by the pivot, at nearly 16 cm with
a standard deviation of 10 cm (Table 1).

Another test scenario was considered for evaluation of the algo-
rithm performance for moving obstacles. Several captures were
performed to evaluate the performance of the algorithm when
identifying a moving team mate. This set of six captures consisted
on a robot observing a team mate moving around and registering
the data about the obstacles. The path taken by the moving team
mate is represented in Fig. 20. The number of failed identifications
was greater when the moving robot was farther from the observer,
as expected due to the noisy nature of the measurements.

The captures were performed throughout the day, with
different lighting conditions but with the same robot calibration.
Table 2 summarizes this set of captures, which revealed a total
mean identification ratio of approximately 71%.
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5.3. Obstacle sharing

With the purpose of improving the global perception of the
team robots, the sharing of locally known information is an impor-
tant feature. Obstacle sharing allows the team robots to have a
more global perception of the field occupancy, allowing them to
estimate, for instance, passing and dribbling corridors more
effectively.

However, one has to keep in mind that, mainly due to illumina-
tion conditions and eventual reflective materials, some of the de-
tected obstacles may not be exactly robots, but dark shadowy
areas. If that is the case, the simple sharing of obstacles would
propagate an eventually false obstacle among the team. Thus the
algorithm for sharing the obstacles makes a fusion of the several
team mates information.

The fusion of the information is done mate by mate. After build-
ing the worldstate by its own means, the agent checks all the avail-
able obstacle information provided by team mates, one by one.
Their obstacles are matched with the own ones. If the agent does
not know an obstacle shared by the team mate, it keeps it in a tem-
porary list of unconfirmed obstacles. This is done to all the team
mates obstacles. When another team mate shares a common
obstacle, that same obstacle is confirmed and is transferred to
the local list of obstacles. In the current cycle, the temporary obsta-
cles that were not confirmed are not considered. A robot does not
use negative information from other robots to remove obstacles it
actually saw from its local world model. An outline of the algo-
rithm is presented next.

for c:=1 to total_number_of_team_mates
for o:=1 to total_obstacles_of_team_mate
for m:=1 to total_own_obstacles
if m matches o

I already know this obstacle, do nothing

else

if previously known by another team mate

obstacle confirmed and added

else

obstacle considered temporarily

waits for confirmation by another team

mate

endif

endif

endfor

endfor

endfor
Fig. 21. Image of the control station showing an obstacle of robot 2 that was not
seen by itself (on the center of the field). In this case it assumes the obstacle by
confirmation of both robots 5 and 6.
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The matching of the team mate obstacles with the own obsta-
cles is done in a way similar to the matching of the obstacle iden-
tification with the team mate position described earlier. The
CAMBADA team mate position in Fig. 16 is replaced by the current
team mate obstacle for the matching test.

Fig. 21 shows a situation where robot 2, in the goal area was too
far to see the obstacle on the middle of the field. Thus, it considered
the obstacle in question, only because it is identified by both robots
5 and 6, as visible in the figure.
6. Conclusion and future work

The techniques chosen for information and sensor fusion
proved to be effective in accomplishing their objectives. The Kal-
man filter allows to filter the noise on the ball position and pro-
vides an important prediction feature which allows fast detection
of deviations of the ball path. The linear regression used to esti-
mate the velocity is also effective, and combined with the devia-
tion detection based on the Kalman filter prediction error,
provides a faster way to recalculate the velocity in the new
trajectory.

The improvement on obstacle treatment allows modifications
on the overall team strategy, particularly regarding passing possi-
bilities. It also allows the improvement of the robots movement,
since team mate obstacles can have a different treatment than
the opponents, because team mates have velocities and other
information available.

The CAMBADA team obtained the 1st place in the last years of
the Portuguese robotics open (Robótica 2007, Robótica 2008, Robó-
tica 2009 and Robótica 2010), and internationally achieved 5th
place in RoboCup 2007, 1st place in RoboCup 2008, 3rd place in
RoboCup 2009 and 2nd place in GermanOpen 2010.

Although the described work proved to be effective and helped
to achieve good results, improving is always the aim for this kind of
project. Thus, improvements on the localization algorithm are de-
sired, as well as a different way to disambiguate symmetric posi-
tions to eventually complement or replace the compass.

Another path to follow would be the improving of team strategy
based on obstacle identification, creating new forms of cooperation
and set plays for in-game situations.
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