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Robotic soccer is nowadays a popular research domain in the area of multi-robot systems. In the context
of RoboCup, the Middle Size League is one of the most challenging. This paper presents an efficient omni-
directional vision system for real-time object detection, developed for the robotic soccer team of the Uni-
versity of Aveiro, CAMBADA. The vision system is used to find the ball and white lines, which are used for
self-localization, as well as to find the presence of obstacles. Algorithms for detecting these objects and
also for calibrating most of the parameters of the vision system are presented in this paper. We also pro-
pose an efficient approach for detecting arbitrary FIFA balls, which is an important topic of research in the
Middle Size League. The experimental results that we present show the effectiveness of our algorithms,
both in terms of accuracy and processing time, as well as the results that the team has been achieving: 1st
place in RoboCup 2008, 3rd place in 2009 and 1st place in the mandatory technical challenge in RoboCup
2009, where the robots have to play with an arbitrary standard FIFA ball.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction In this paper, we provide a comprehensive description of the vi-
The Middle Size League (MSL) of RoboCup is a forum where sev-
eral research areas have been challenged for proposing solutions to
well-defined practical problems. The robotic vision is one of those
areas and, for most of the MSL teams, it has become the only way of
sensing the surrounding world.

From the point of view of a robot, the playing field during a
game provides a fast-changing scenery, where the teammates,
the opponents and the ball move quickly and often in an unpre-
dictable way. The robots have to capture these scenes through
their cameras and have to discover where the objects of interest
are located. There is no time for running complex algorithms.
Everything has to be computed and decided in a small fraction of
a second, for allowing real-time operation; otherwise, it becomes
useless.

Real-time is not the only challenge that needs to be addressed.
Year after year, the initially well controlled and robot friendly envi-
ronment where the competition takes place has become increas-
ingly more hostile. Conditions that previously have been taken
for granted, such as controlled lighting or easy to recognize color
coded objects, have been relaxed or even completely suppressed.
Therefore, the vision system of the robots needs to be prepared
for adapting to strong lighting changes during a game, as well as,
for example, for ball-type changes across games.
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sion system of the MSL CAMBADA team (Fig. 1). Cooperative
Autonomous Mobile roBots with Advanced Distributed Architec-
ture (CAMBADA) is the RoboCup MSL soccer team of the Institute
of Electronics and Telematics Engineering of Aveiro (IEETA) re-
search institute, University of Aveiro, Portugal. The team, which
started officially in October 2003, won the 2008 MSL RoboCup
World Championship and ranked 3rd in the 2009 edition.

We start by presenting and explaining the hardware architec-
ture of the vision system used by the robots of the CAMBADA team,
which relies on an omnidirectional vision system (Section 2). Then,
we proceed with the description of the approach that we have
adopted regarding the calibration of a number of crucial
parameters and in the construction of auxiliary data structures
(Section 3). Concerning the calibration of the intrinsic parameters
of the digital camera, we propose an automated calibration algo-
rithm that is used to configure the most important features of
the camera, namely, the saturation, exposure, white-balance, gain
and brightness. The proposed algorithm uses the histogram of
intensities of the acquired images and a black and a white area,
known in advance, to estimate the referred parameters. We also
describe a general solution to calculate the robot centered dis-
tances map, exploring a back-propagation ray-tracing approach
and the geometric properties of the mirror surface.

The soccer robots need to locate several objects of interest, such
as the ball, the opponent robots and the teammates. Moreover,
they also need to collect information for self-localization, namely,
the position of the field white lines. For these tasks, we have devel-
oped fast and efficient algorithms that rely on color information.
vision system for soccer robots: From calibration to object detection. Me-
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Fig. 1. The CAMBADA team playing at RoboCup 2009, Graz, Austria.

Fig. 2. On the left, a detailed view of the CAMBADA vision system. On the right, one
of the robots.
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The color extraction algorithms are based on lookup tables and use
a radial model for color object detection. Due to the severe restric-
tions imposed by the real-time constraint, some of the image pro-
cessing tasks are implemented using a multi-threading approach
and use special data structures to reduce the processing time. Sec-
tion 4 provides a detailed description of these algorithms.

As previously mentioned, the color codes assigned to the ob-
jects of interest tend to disappear as the competition evolves. For
example, the usual orange ball used in the MSL will soon be re-
placed by an arbitrary FIFA ball, increasing the difficulty in locating
one of the most important objects in the game. Anticipating this
scenario, we developed a fast method for detecting soccer balls
independently of their colors. In Section 5, we describe a solution
based on the morphological analysis of the image. The algorithm
relies on edge detection and on the circular Hough transform,
attaining a processing time almost constant and complying with
the real-time constraint. Its appropriateness has been clearly dem-
onstrated by the results obtained in the mandatory technical chal-
lenge of the RoboCup MSL: 2nd place in 2008 and 1st place in 2009.
2. Architecture of the vision system

The CAMBADA robots [1] use a catadioptric vision system, often
named omnidirectional vision system, based on a digital video
camera pointing at a hyperbolic mirror, as presented in Fig. 2.
We are using a digital camera Point Grey Flea 2, 1 FL2-08S2C with
a 1/3” CCD Sony ICX204 that can deliver images up to 1024 � 768
pixels in several image formats, namely RGB, YUV 4:1:1, YUV 4:2:2
or YUV 4:4:4. The hyperbolic mirror was developed by IAIS Fraunho-
fer Gesellschaft 2 (FhG-AiS). Although the mirror was designed for
the vision system of the FhG Volksbot 3 we are achieving also an
excellent result with it in our vision system.

The use of omnidirectional vision systems have captured much
interest in the last years, because it allows a robot to attain a 360�
field of view around its central vertical rotation axis, without hav-
ing to move itself or its camera. In fact, it has been a common solu-
tion for the main sensorial element in a significant number of
autonomous mobile robot applications, as is the case of the MSL,
where most of the teams have adopted this approach [2–9].

A catadioptric vision system ensures an integrated perception of
all major target objects in the surrounding area of the robot, allow-
ing a higher degree of maneuverability. However, this also implies
higher degradation in the resolution with growing distances away
from the robot, when compared to non-isotropic setups.
1 http://www.ptgrey.com/products/flea2/, Last accessed: 18/02/2010.
2 http://www.iais.fraunhofer.de/, Last accessed: 18/02/2010.
3 http://www.volksbot.de/, Last accessed: 18/02/2010.
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3. Calibration of the vision system

An important task in the MSL is the calibration of the vision
system. This includes the calibration of intrinsic parameters of
the digital camera, the computation of the inverse distance
map, the detection of the mirror and robot center and the defini-
tion of the regions of the image that have to be processed. Cali-
bration has to be performed when environmental conditions
change, such as playing in a different soccer field or when the
lighting conditions vary over time. Therefore, there are adjust-
ments that have to be made almost continuously, for example if
the playing field is unevenly illuminated, or less frequently, when
the playing field changes. Moreover, a number of adjustments
have also to be performed when some of the vision hardware
of the robot is replaced, such as the camera or the mirror. All
these calibrations and adjustments should be robust, i.e., they
should be as much as possible insensitive to small environmental
variations, they should be fast to perform and they should be
simple to execute, so that no special calibration expert is required
to operate them.
3.1. Self-calibration of the digital camera parameters

In a near future, it is expected that the MSL robots will have to
play under natural lighting conditions and in outdoor fields. This
introduces new challenges. In outdoor fields, the illumination
may change slowly during the day, due to the movement of the
sun, but also may change quickly in short periods of time due to
a partial and temporally varying covering of the sun by clouds. In
this case, the robots have to adjust, in real-time, both the color seg-
mentation values as well as some of the camera parameters, in or-
der to adapt to new lighting conditions [10].

The common approach regarding the calibration of the robot
cameras in the MSL has been based on manual adjustments, that
are performed prior to the games, or through some automatic pro-
cess that runs offline using a pre-acquired video sequence. How-
ever, most (or even all) of the parameters remain fixed during
the game.

We propose an algorithm that does not require human interac-
tion to configure the most important parameters of the camera,
namely the exposure, the white-balance, the gain and the bright-
ness. Moreover, this algorithm runs continuously, even during
the game, allowing coping with environmental changes that often
occur when playing.

We use the histogram of intensities of the acquired images and
a black and a white area, which location is known in advance, to
estimate the referred parameters of the camera. Note that this ap-
proach differs from the well known problem of photometric cam-
era calibration (a survey can be found in [11]), since we are not
vision system for soccer robots: From calibration to object detection. Me-
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interested in obtaining the camera response values, but only to
configure its parameters according to some measures obtained
from the acquired images. The self-calibration process for a single
robot requires a few seconds, including the time necessary to start
the application. This is significantly faster than the usual manual
calibration by an expert user, for which several minutes are
needed.

3.1.1. Proposed algorithm
The proposed calibration algorithm processes the image

acquired by the camera and analyzes a white area in the image
(a white area in a fixed place on the robot body, near the camera
in the center of the image), in order to calibrate the white-bal-
ance. A black area (we use a part of the image that represents
the robot itself, actually a rectangle in the upper left side of
the image) is used to calibrate the brightness of the image. Final-
ly, the histogram of the image intensities is used to calibrate the
exposure and gain.

The histogram of the intensities of an image is a representation
of the number of times that each intensity value appears in the im-
age. For an image represented using 8 bits per pixel, the possible
values are between 0 and 255. Image histograms can indicate some
aspects of the lighting conditions, particularly the exposure of the
image and whether if it is underexposed or overexposed.

The assumptions used by the proposed algorithm are the
following:

(i) The white area should appear white in the acquired image.
In the YUV color space, this means that the average value
of U and V should be close to 127, that is to say, the chro-
minance components of the white section should be as
close to zero as possible. If the white-balance is not cor-
rectly configured, these values are different from 127 and
the image does not have the correct colors. The white-bal-
ance parameter is composed by two values, WB_BLUE and
WB_RED, directly related to the values of U and V,
respectively.

(ii) The black area should be black. In the RGB color space, this
means that the average values of R, G and B should be close
to zero. If the brightness parameter is too high, it is observed
that the black region becomes blue, resulting in a degrada-
tion of the image.

(iii) The histogram of intensities should be centered around 127
and should span all intensity values. Dividing the histogram
into regions, the left regions represent dark colors, while the
right regions represent light colors. An underexposed image
will be leaning to the left, while an overexposed image will
be leaning to the right in the histogram (for an example, see
Fig. 5a). The values of the gain and exposure parameters are
adjusted according to the characteristic of the histogram.

Statistical measures can be extracted from the images to quan-
tify the image quality [12,13]. A number of typical measures used
in the literature can be computed from the image gray level histo-
gram, namely, the mean

l ¼
XN�1

i¼0

iPi; l 2 ½0;255�; ð1Þ

the entropy

E ¼ �
XN�1

i¼0

Pi logðPiÞ; E 2 ½0;8�; ð2Þ

the absolute central moment
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ACM ¼
XN�1

i¼0

ji� ljPi; ACM 2 ½0� 127� ð3Þ

and the mean sample value

MSV ¼
P4

j¼0ðjþ 1Þxj
P4

j¼0xj

; MSV 2 ½0� 5�; ð4Þ

where N is the number of possible gray values in the histogram
(typically, 256), Pi is the relative frequency of each gray value and
xj is the sum of the gray values in region j of the histogram (in
the proposed approach we divided the histogram into five regions).
When the histogram values of an image are uniformly distributed in
the possible values, then l � 127, E � 8, ACM � 60 and MSV � 2.5. In
the experimental results we use these measures to analyze the per-
formance of the proposed calibration algorithm. Moreover, we use
the information of MSV to calibrate the exposure and the gain of
the camera. The algorithm is depicted next.

do
do

acquire image

calculate the histogram of intensities

calculate the MSV value

if MSV<2.0 OR MSV>3.0

apply the PI controller to adjust exposure

else

apply the PI controller to adjust gain

set the camera with new exposure and gain values

while exposure or gain parameters change

do

acquire image

calculate average U and V values of the white

area

apply the PI controller to adjust WB_BLUE

apply the PI controller to adjust WB_RED

set the camera with new white-balance

parameters

while white-balance parameters change

do

acquire image

calculate average R, G and B values of the black

area

apply the PI controller to adjust brightness

set the camera with new brightness value

while brightness parameter change

while any parameter changed

The calibration algorithm configures one parameter at a time,
proceeding to the next one when the current one has converged.
For each of these parameters, a PI controller was implemented. PI
controllers are used instead of proportional controllers as they re-
sult in better control, having no stationary error. The coefficients of
the controller were obtained experimentally: first, the proportional
gain was increased until the camera parameter started to oscillate.
Then, it was reduced to about 70% of that value and the integral
gain was increased until an acceptable time to reach the desired
reference was obtained [14]. The algorithm stops when all the
parameters have converged. More details regarding this algorithm
can be found in [15].

3.1.2. Experimental results
To measure the performance of this calibration algorithm, tests

have been conducted using the camera with different initial config-
urations. In Fig. 3, results are presented both when the algorithm
starts with the parameters of the camera set to zero, as well as
vision system for soccer robots: From calibration to object detection. Me-
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Fig. 3. Some experiments using the automated calibration procedure. At the top, results obtained starting with all the parameters of the camera set to zero. At the bottom,
results obtained with all the parameters set to the maximum value. On the left, the initial image acquired. In the middle, the image obtained after applying the automated
calibration procedure. On the right, the graphics showing the evolution of the parameters along the time.

Table 1
Statistical measures obtained for the images presented in Figs. 3 and 4. The initial
values refer to the images obtained with the camera before applying the proposed
automated calibration procedure. The final values refer to the images acquired with
the cameras configured with the proposed algorithm.

Experiment – ACM l E MSV

Parameters set to zero Initial 111.00 16.00 0.00 1.00
Final 39.18 101.95 6.88 2.56

Parameters set to maximum Initial 92.29 219.03 2.35 4.74
Final 42.19 98.59 6.85 2.47

Camera in auto-mode Initial 68.22 173.73 6.87 3.88
Final 40.00 101.14 6.85 2.54
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when set to the maximum value. As can be seen, the configuration
obtained after running the proposed algorithm is approximately
the same, independently of the initial configuration of the camera.
Moreover, the algorithm is fast to converge (it takes between 60
and 70 frames).

In Fig. 4, it is presented an image acquired with the camera in
auto-mode. As can be seen, the image obtained using the camera
with the parameters in auto-mode is overexposed and the white
balance is not configured correctly. This is due to the fact that
the camera analyzes the entire image and, as can be observed in
Fig. 3, there are large black regions corresponding to the robot it-
self. Our approach uses a mask to select the region of interest, in
order to calibrate the camera using exclusively the valid pixels.
Moreover, and due to the changes in the environment when the ro-
bot is moving, leaving the camera in auto-mode leads to undesir-
able changes in the parameters of the camera, causing color
classification problems.

Table 1 presents the values of the statistical measures described
in (1)–(4), regarding the experimental results presented in Fig. 3.
Fig. 4. On the left, an example of an image acquired with the camera parameters in
auto-mode. On the right, an image acquired after applying the automated
calibration algorithm.
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These results confirm that the camera is correctly configured after
applying the automated calibration procedure, since the results ob-
tained are close to the optimal. Moreover, the algorithm converges
always to the same set of parameters, independently of the initial
configuration.

According to the experimental results presented in Table 1, we
conclude that the MSV measure is the best one for classifying the
quality of an image. This is due to the fact that it is closer to the
optimal values when the camera is correctly calibrated. Moreover,
this measure can distinguish between two images that have close
characteristics, as is the case when the camera is used in auto-
mode.

The good results of the automated calibration procedure can
also be confirmed in the histograms presented in Fig. 5. The histo-
gram of the image obtained after applying the proposed automated
calibration procedure (Fig. 5b) is centered near the intensity 127,
which is a desirable property, as shown in Fig. 3 in the middle
images. The histogram of the image acquired using the camera
with all the parameters set to the maximum value (Fig. 5a) shows
vision system for soccer robots: From calibration to object detection. Me-
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Fig. 5. The histogram of the intensities of the two images presented in Fig. 4. In (a) it is shown the histogram of the image obtained with the camera parameters set to the
maximum value. (b) Shows the histogram of the image obtained after applying the automated calibration procedure.

Fig. 6. On the left, an image acquired outdoors using the camera in auto-mode. As it
is possible to observe, the colors are washed out. This happens because the camera’s
auto-exposure algorithm tries to compensate the black region around the mirror.
On the right, the same image with the camera calibrated using our algorithm. As
can be seen, the colors and the contours of the objects are much more defined.
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that the image is overexposed, leading that the majority of the pix-
els have bright colors.

This algorithm has also been tested outdoors, under natural
light. Fig. 6 shows that it works well even when the robot is under
very different lighting conditions, showing its robustness.
Fig. 7. A screenshot of the tool developed to calibrate some important parameters of the
regions of the image to be processed.
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3.2. Distance map calibration

For most practical applications, the setup of the vision system
requires the translation of the planar field of view at the camera
sensor plane, into real world coordinates at the ground plane, using
the robot as the center of this system. In order to simplify this non-
linear transformation, most practical solutions adopted in real ro-
bots choose to create a mechanical geometric setup that ensures
a symmetrical solution for the problem by means of a single view-
point (SVP) approach. This, on the other hand, calls for a precise
alignment of the four major points comprising the vision setup:
the mirror focus, the mirror apex, the lens focus and the center
of the image sensor. Furthermore, it also demands the sensor plane
to be both parallel to the ground field and normal to the mirror axis
of revolution, and the mirror foci to be coincident with the effec-
tive viewpoint and the camera pinhole respectively [16]. Although
tempting, this approach requires a precision mechanical setup.

In this section, we briefly present a general solution to calcu-
late the robot centered distances map on non-SVP catadioptric
setups, exploring a back-propagation ray-tracing approach and
vision system, namely the inverse distance map, the mirror and robot center and the

vision system for soccer robots: From calibration to object detection. Me-
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Fig. 9. Acquired image after reverse-mapping into the distance map. On the left, the
map was obtained with all misalignment parameters set to zero. On the right, after
automatic correction.
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the geometric properties of the mirror surface. A detailed
description of the algorithms can be found in [17] and a screen-
shot of the application is presented in Figs. 7 and 8. This solution
effectively compensates for the misalignment that may result
either from a simple mechanical setup or from the use of low
cost video cameras. The method can also extract most of the re-
quired parameters from the acquired image itself, allowing it to
be used for self-calibration purposes.

In order to allow further trimming of these parameters, two
simple image feedback tools have been developed. The first one
creates a reverse mapping of the acquired image into the real
world distance map. A fill-in algorithm is used to integrate image
data in areas outside pixel mapping on the ground plane. This pro-
duces a plane vision from above, allowing visual check of line par-
allelism and circular asymmetries (Fig. 9). The second generates a
visual grid with 0.5 m distances between both lines and columns,
which is superimposed on the original image. This provides an
immediate visual clue for the need of possible further distance cor-
rection (Fig. 10).

With this tool, it is also possible to determine some other
important parameters, namely the mirror center and the area of
the image that will be processed by the object detection algorithms
(Fig. 11).
4. Color-based object detection

The algorithms that we propose for object detection can be split
into three main modules, namely the Utility Sub-System, the Color
Processing Sub-System and the Morphological Processing Sub-System,
as shown in Fig. 12. In the Color Processing Sub-System, proper color
classification and extraction processes were developed, along with
an object detection process to extract information from the ac-
quired image, through color analysis. The Morphological Processing
Sub-System presented in Section 5, is used to detect arbitrary FIFA
balls independently of their colors.

In order to satisfy the real-time constrains in the proposed
image processing system, we implemented efficient data struc-
tures to process the image data [18,19]. Moreover, we use a two-
thread approach to perform the most time consuming operations
Fig. 8. A screenshot of the interface to calibrate some important parameters need
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in parallel, namely the color classification and the color extraction,
taking advantage of the dual core processor used by the laptop
computers of our robots.
4.1. Color extraction

Image analysis in the MSL is simplified, since objects are color
coded. Black robots play with an orange ball on a green field that
has white lines. Thus, the color of a pixel is a strong hint for object
segmentation. We exploit this fact by defining color classes, using a
look-up table (LUT) for fast color classification. The table consists of
16,777,216 entries (224, 8 bits for red, 8 bits for green and 8 bits for
blue), each 8 bits wide, occupying a total of 16 MByte. Note that for
other color spaces the table size would be the same, changing only
the meaning of each component. Each bit expresses whether the
color is within the corresponding class or not. This means that a
certain color can be assigned to several classes at the same time.
To classify a pixel, we first read the pixel’s color and then use the
color as an index into the table. The 8-bit value read from the table
is called the ‘‘color mask” of that pixel.

The color calibration is performed in the HSV (Hue, Saturation
and Value) color space, since it provides a single, independent, col-
to obtain the inverse distance map (these parameters are described in [17]).

vision system for soccer robots: From calibration to object detection. Me-
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Fig. 10. A 0.5 m grid, superimposed on the original image. On the left, with all
correction parameters set to zero. On the right, the same grid after geometrical
parameter extraction.

Fig. 11. On the left, the position of the radial search lines used in the omnidirec-
tional vision system, after detecting the center of the robot in the image using the
tool described in this section. On the right, an example of a robot mask used to
select the pixels to be processed, obtained with the same tool. White points
represent the area that will be processed.
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or spectrum variable. In the current setup, the image is acquired in
RGB or YUV format and then is converted to an image of labels
using the appropriate LUT. Fig. 13 presents a screenshot of the
application used to calibrate the color ranges for each color class,
using the HSV color space and a histogram based analysis.

Certain regions of the image are excluded from analysis. One of
them is the part in the image that reflects the robot itself. Other re-
gions are the sticks that hold the mirror and the areas outside the
mirror. These regions are found using the algorithm described in
Section 3.2. An example is presented on the right of Fig. 11, where
the white pixels indicate the area that will be processed. With this
approach, we can reduce the time spent in the conversion and
searching phases and we also eliminate the problem of finding
erroneous objects in those areas.
Fig. 12. The software architecture of t
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To extract color information from the image we use radial
search lines, instead of processing the whole image. A radial search
line is a line that starts at the center of the robot, with some angle,
and ends at the limits of the image. In an omnidirectional system,
the center of the robot is approximately the center of the image
(see left of Fig. 11). The search lines are constructed based on the
Bresenham line algorithm [20]. They are constructed once, when
the application starts, and saved in a structure in order to improve
the access to these pixels in the color extraction module. For each
search line, we iterate through its pixels to search for transitions
between two colors and areas with specific colors.

The use of radial search lines accelerates the process of object
detection, due to the fact that we only process part of the valid pix-
els. This approach has a processing time almost constant, indepen-
dently of the information that is captured by the camera.
Moreover, the polar coordinates, inherent to the radial search lines,
facilitate the definition of the bounding boxes of the objects in
omnidirectional vision systems.

We developed an algorithm for detecting areas of a specific col-
or which eliminates the possible noise that could appear in the im-
age. For each radial scanline, it is performed a median filtering
operation. Each time a pixel is found with a color of interest, the
algorithm analyzes the pixels that follow (a predefined number).
If it does not find more pixels of that color, it discards the pixel
found and continues. When a predefined number of pixels with
that color is found, it considers that the search line has that color.

Regarding the ball detection, we created an algorithm to recover
lost orange pixels due to the ball shadow cast over itself. As soon as
we find a valid orange pixel in the radial sensor, the shadow recov-
ery algorithm tries to search for darker orange pixels previously
discarded in the color segmentation analysis. The search is con-
ducted in each radial sensor, starting at the first orange pixel found
when searching towards the center of the robot, limited to a max-
imum number of pixels. For each pixel analyzed, a comparison is
performed using a wider region of the color space, in order to being
able to accept darker orange pixels. Once a different color is found
or the maximum number of pixels is reached, the search along the
current sensor is completed and the next sensor is processed. In
Fig. 16, we can see the pixels recovered by this algorithm (the or-
ange blobs contain pixels that were not originally classified as
orange).

To accelerate the process of calculating the position of the ob-
jects, we put the color information that was found in each of the
search lines into a list of colors. We are interested in the first pixel
(in the corresponding search line) where the color was found and
with the number of pixels with that color that have been found
he omnidirectional vision system.

vision system for soccer robots: From calibration to object detection. Me-
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Fig. 13. A screenshot of the application used to calibrate the color ranges for each
color class using the HSV color space.

Fig. 15. Relation between pixels and metric distances. The center of the robot is
considered the origin and the metric distances are considered on the ground plane.
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in the search line. Then, using the previous information, we sepa-
rate the information of each color into blobs (Fig. 16 shows an
example). After this, it is calculated the blob descriptor that will
be used for the object detection module, which contains the fol-
lowing information:

– Distance to the robot.
– Closest pixel to the robot.
– Position of the mass center.
– Angular width.
– Number of pixels.
– Number of green and white pixels in the neighborhood of the

blob.

4.2. Object detection

The objects of interest that are present in a MSL game are: a ball,
obstacles and the green field with white lines. Currently, our sys-
tem detects efficiently all these objects with a set of simple algo-
rithms that, using the color information collected by the radial
search lines, calculate the object position and/or its limits in a polar
representation (distance and angle).

The algorithm that searches for the transitions between green
pixels and white pixels is described next. If a non-green pixel is
found in a radial scanline, we search for the next green pixel,
counting the number of non-green pixels and the number of white
pixels that meanwhile appeared. If these values are greater than a
predefined threshold, the center of this region is considered a tran-
sition point corresponding to a position of a soccer field line. The
algorithm is illustrated in Fig. 14 with an example. A similar ap-
proach has been described in [21].

The ball is detected using the following algorithm:

(i) Separate the orange information into blobs.
(ii) For each blob, calculate the information described

previously.
(iii) Perform a first validation of the orange blobs using the infor-

mation about the green and white pixels in the neighbor-
hood of the blob, to guarantee that only balls inside the
field are detected.
G G G G W WXG X

bWaW

Fig. 14. An example of a transition. ‘‘G” means green pixel, ‘‘W” means white pixel and ‘‘
to some noise or a not perfect color calibration. (For interpretation of the references to
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(iv) Validate the remaining orange blobs according to the num-
ber of pixels. As illustrated in Fig. 15, it is known the relation
between the pixel size at the ground plane and the distance
to the center of the robot. Using this knowledge, we estimate
the number of pixels that a ball should have according to the
distance.

(v) Following the same approach, the angular width is also used
to validate the blobs.

(vi) The ball candidate is the valid blob closest to the robot. The
position of the ball is the mass center of the blob.

To calculate the position of the obstacles around the robot, we
use the following algorithm:

(i) Separate the black information into blobs.
(ii) Calculate the information for each blob.

(iii) Perform a simple validation of the black blobs using the
information about the green and white pixels in the neigh-
borhood of the blob, to guarantee that only obstacles inside
the field are detected.

(iv) The position of the obstacle is given by the distance of the
blob relatively to the robot. The limits of the obstacle are
obtained using the angular width of the blob.

More details regarding the detection and identification of obsta-
cles can be found in [22]. Fig. 16 presents an example of an ac-
quired image, the corresponding segmented image and the
detected color blobs. As can be seen, the objects are correctly
detected.

The position of the white lines, the position of the ball and the
information about the obstacles are then sent to the Real-time
Database [1,23] and used, afterward, by the high level process
responsible for the behaviors of the robots [24,25,22,26].
4.3. Experimental results

To experimentally measure the efficiency of the proposed algo-
rithms, the robot was moved along a predefined path through the
robotic soccer field, leaving the ball in a known location. The ball
W G G G GX X

cW

G

X” means pixel with a color different from green or white, for example resulting due
color in this figure legend, the reader is referred to the web version of this article.)

vision system for soccer robots: From calibration to object detection. Me-
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Fig. 16. On the left, an example of an original image acquired by the omnidirectional vision system. In the center, the corresponding image of labels. On the right, the color
blobs detected in the images. Marks over the ball point to the mass center. The several marks near the white lines (magenta) are the position of the white lines. The cyan
marks are the position of the obstacles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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position given by the robot is then compared with the real position
of the ball. Note that the results in this test may be affected by er-
rors in the localization algorithm and by some bumps while the ro-
bot is moving. The separate study of these sources of error has
being left outside this experimental evaluation. However, they
should be performed, for better understanding the several factors
that influence the correct localization of the ball.

The robot path across the field may be seen in Fig. 17, along
with the measured ball position. According to that data, it is possi-
ble to notice that the average of the measured positions of the ball
is almost centered in the real ball position, showing the effective-
ness of the proposed algorithms. Our measures show a very high
detection ratio (near 95%), and a good accuracy, with the average
measures very close to the real ball position. In our experiments,
we verified that the robots are able to detect the ball up to 6 m
with regular light conditions and a good color calibration, easy to
obtain after applying the proposed automated calibration algo-
rithm described in Section 3.

The proposed algorithm has an almost constant processing
time, independently of the environment around the robot, typically
around 6 ms. It needs approximately 35 MBytes of memory. The
experimental results were obtained using a camera resolution of
640 � 480 pixels and a laptop with an Intel Core 2 duo at
2.0 GHz and 1 GB of memory.
5. Arbitrary ball detection

The color codes tend to disappear as the competition evolves,
increasing the difficulty posed to the vision algorithms. The color
of the ball, currently orange, is the next color scheduled to become
arbitrary. In this section, we propose a solution for overcoming this
-2
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-2.5-2 -1.5-1 -0.5 0  0.5 1  1.5 2  2.5
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X

Ball in the center of the field (0, 0)

BALL
ROBOT

Fig. 17. Experimental results obtained by the omnidirectional system using the
color ball detection. In this experiment, the ball was positioned in the center of the
field, position (0,0). The robot performed a predefined trajectory while the position
of the ball and the robot was recorded. Both axes in the graphics are in meters.
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new challenge, i.e., a method for detecting balls independently of
their colors. This solution is based on a morphological analysis of
the image, being strictly directed to detect round objects in the
field with specific characteristics, in this case the ball.

Morphological object recognition through image analysis has
became more robust and accurate in the past years, whereas still
very time consuming even to modern personal computers. Because
RoboCup is a real-time environment, available processing time can
become a serious constraint when analyzing large amounts of data
or executing complex algorithms.

This section presents an arbitrary FIFA ball recognition algo-
rithm, based on the use of image segmentation and the circular
Hough transform. The processing time is almost constant and al-
lows real-time processing. As far as we know, this approach has
never been proposed. The experimental results obtained, as well
as the classifications obtained by the CAMBADA team, seem to be
very promising.

Regarding the vision system described in Fig. 12, it is possible to
specify whether to use the Morphological sub-system to detect the
ball or the current color-based approach. Currently, in the MSL,
the shape-based detection is only necessary in the mandatory chal-
lenge of the competition, although it will be incorporated in the
rules in the next years.
5.1. Related work

Many of the algorithms proposed during previous research
work showed their effectiveness but, unfortunately, their process-
ing time is in some cases over one second per video frame [27]. In
[28], the circular Hough transform was presented in the context of
colored ball detection as a validation step. However, no details
about the implementation and experimental results have been
presented.

Hanek et al. [29] proposed a Contracting Curve Density algo-
rithm to recognize the ball without color labeling. This algorithm
fits parametric curve models to the image data by using local crite-
ria based on local image statistics to separate adjacent regions. This
method can extract the contour of the ball even in cluttered envi-
ronments under different illumination, but the vague position of
the ball should be known in advance. The global detection cannot
be realized by this method.

Treptow et al. [30] proposed a method to detect and track a ball
without color information in real-time, by integrating the Ada-
boost Feature Learning algorithm into a condensation tracking
framework.

Mitri et al. [31] presented a scheme for color invariant ball
detection, in which the edged filtered images serve as the input
of an Adaboost learning procedure that constructs a cascade of
vision system for soccer robots: From calibration to object detection. Me-
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a b c
Fig. 19. Example of a circle detection through the use of the circular Hough
transform.
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classification and regression trees. This method can detect different
soccer balls in different environments, but the false positive rate is
high when there are other round objects in the environment.

Coath et al. [32] proposed an edge-based arc fitting algorithm to
detect the ball for soccer robots. However, the algorithm is used in
a perspective camera vision system in which the field of view is far
smaller and the image is also far less complex than that of the
omnidirectional vision system used by most of the robotic soccer
teams.

More recently, Lu et al. [33] considered that the ball on the field
can be approximated by an ellipse. They scan the color variation to
search for the possible major and minor axes of the ellipse, using
radial and rotary scanning, respectively. A ball is considered if
the middle points of a possible major axis and a possible minor axis
are very close to each other in the image. However, this method
has a processing time that can achieve 150 ms if the tracking algo-
rithm fails, which might cause problems in real-time applications.

5.2. Proposed approach

The proposed approach is presented in the top layer of Fig. 12.
The search for potential ball candidates is conducted taking advan-
tage of morphological characteristics of the ball (round shape),
using a feature extraction technique known as the Hough trans-
form. This is a technique for identifying the locations and orienta-
tions of certain types of features in a digital image [34]. The Hough
transform algorithm uses an accumulator and can be described as a
transformation of a point in the x, y-plane to the parameter space.
The parameter space is defined according to the shape of the object
of interest, in this case, the ball presents a rounded shape. First
used to identify lines in images, the Hough transform has been
generalized through the years to identify positions of arbitrary
shapes by a voting procedure [35–37].

Fig. 18 shows an example of a circular Hough transform, for a
constant radius, from the x, y-space to the parameter space.

In Fig. 19, we show an example of circle detection through the
circular Hough transform. We can see the original image of a dark
circle (known radius r) on a bright background (see Fig. 19a). For
each dark pixel, a potential circle-center locus is defined by a circle
with radius r and center at that pixel (see Fig. 19b). The frequency
with which image pixels occur in the circle-center loci is deter-
mined (see Fig. 19c). Finally, the highest-frequency pixel repre-
sents the center of the circle with radius r.

To feed the Hough transform process, it is necessary a binary
image with the edge information of the objects. This image,
Edges Image, is obtained using an edge detector operator. In
the following, we present an explanation of this process and
its implementation.

To be possible to use this image processing system in real-time,
and increase time efficiency, a set of data structures to process the
image data has been implemented [18,19].
Fig. 18. The circular Hough transform. a and b represent the parameter space that
in this application are the radius of the ball and the distance to robot, respectively.
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The proposed algorithm is based on three main operations:

(i) Edge detection: this is the first image processing step in the
morphological detection. It must be as efficient and accurate
as possible in order not to compromise the efficiency of the
whole system. Besides being fast to calculate, the intended
resulting image must be absent of noise as much as possible,
with well defined contours, and be tolerant to the motion
blur introduced by the movement of the ball and the robots.

Some popular edge detectors were tested, namely Sobel [38,39],
Laplace [40,41] and Canny [42]. The tests were conducted under
two distinct situations: with the ball standing still and with the
ball moving fast through the field. The test with the ball moving
fast was performed in order to study the motion blur effect in
the edge detectors, on high speed objects captured with a frame
rate of 30 frames per second.

For choosing the best edge detector for this purpose, the re-
sults from the tests were compared taking into account the im-
age of edges and processing time needed by each edge detector.
On one hand, the real-time capability must be assured. On the
other hand, the algorithm must be able to detect the edges of
the ball independently of its motion blur effect. According to
our experiments, the Canny edge detector was the most
demanding in terms of processing time. Even so, it was fast
enough for real-time operation and, because it provided the
most effective contours, it was chosen. The parameters of the
edge detector were obtained experimentally.

(ii) Circular Hough transform: this is the next step in the pro-
posed approach to find points of interest containing eventual
circular objects. After finding these points, a validation pro-
cedure is used for choosing points containing a ball, accord-
ing to our characterization. The voting procedure of the
Hough transform is carried out in a parameter space. Object
candidates are obtained as local maxima of a denoted Inten-
sity Image (Fig. 20c), that is constructed by the Hough Trans-
form block (Fig. 12).

Due to the special features of the Hough circular transform, a
circular object in the Edges Image would produce an intense peak
in Intensity Image corresponding to the center of the object (as
can be seen in Fig. 20c). On the contrary, a non-circular object
would produce areas of low intensity in the Intensity Image. How-
ever, as the ball moves away, its edge circle size decreases. To solve
this problem, information about the distance between the robot
center and the ball is used to adjust the Hough transform. We
use the inverse mapping of our vision system [17] to estimate
the radius of the ball as a function of distance.

(iii) Validation: in some situations, particularly when the ball is
not present in the field, false positives might be produced.
To solve this problem and improve the ball information reli-
ability, we propose a validation algorithm that discards false
vision system for soccer robots: From calibration to object detection. Me-
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Fig. 20. Example of a captured image using the proposed approach. The cross over the ball points out the detected position. In (b) the image (a), with the Canny edge detector
applied. In (c), the image (b) after applying the circular Hough transform.

Fig. 21. Experimental results obtained by the omnidirectional system using the
morphological ball detection. In this experience, the ball was positioned in the
penalty mark of the field. The robot performed a predefined trajectory while the
position of the ball was recorded. Both axes in the graphics are in meters.
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positives based on information from the Intensity Image and
the Acquired Image. This validation algorithm is based on two
tests against which each ball candidate is put through.

In the first test performed by the validation algorithm, the
points with local maximum values in the Intensity Image are con-
sidered if they are above a distance-dependent threshold. This
threshold depends on the distance of the ball candidate to the ro-
bot center, decreasing as this distance increases. This first test re-
moves some false ball candidates, leaving a reduced group of
points of interest.

Then, a test is made in the Acquired Image over each point of
interest selected by the previous test. This test is used to eliminate
false balls that usually appear in the intersection of the lines of the
field and other robots (regions with several contours). To remove
these false balls, we analyze a square region of the image centered
in the point of interest. We discard this point of interest if the sum
of all green pixels is over a certain percentage of the square area.
Note that the area of this square depends on the distance of the
point of interest to the robot center, decreasing as this distance in-
creases. Choosing a square where the ball fits tightly makes this
test very effective, considering that the ball fills over 90% of the
square. In both tests, we use threshold values that were obtained
experimentally.

Besides the color validation, it is also performed a validation of
the morphology of the candidate, more precisely a circularity val-
idation. Here, from the candidate point to the center of the ball, it is
performed a search of pixels at a distance r from the center. For
each edge found between the expected radius, the number of edges
at that distance are determined. By the size of the square which
covers the possible ball and the number of edge pixels, it is calcu-
lated the edges percentage. If the edges percentage is greater than
70, then the circularity of the candidate is verified.

The position of the detect ball is then sent to the Real-time
Database, together with the information of the white lines and
the information about the obstacles to be used, afterward, by the
high level process responsible for the behaviors of the robots.

5.3. Experimental results

Fig. 20 presents an example of the Morphological Processing Sub-
System. As can be observed, the balls in the Edges Image (Fig. 20b)
have almost circular contours. Fig. 20c) shows the resulting image
after applying the circular Hough transform. Notice that the center
of the balls present a very high peak when compared to the rest of
the image. The ball considered was the closest to the robot, due to
the fact that it has the high peak in the image.

To ensure good results in the RoboCup competition, the system
was tested with the algorithms described above. For that purpose,
the robot was moved along a predefined path through the robotic
soccer field, leaving the ball in a known location. The ball position
given by the robot is then compared with the real position of the
ball. The results in this test may be affected by the errors in the
Please cite this article in press as: Neves AJR et al. An efficient omnidirectional
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localization algorithm and by the robot bumps while moving.
These external errors are out of the scope of this study.

The robot path in the field may be seen in Fig. 21, along with the
measured ball position. It is possible to notice that the average of
the measured positions of the ball is almost centered in the real
ball position, showing the accuracy of the proposed algorithms.
We obtained a very high detection ratio (near 90%) and a false po-
sitive rate around 0%, which is a very significant result. With the
proposed approach, the omnidirectional vision system can detect
the ball within this precision until distances up to 4 meters.

The average processing time of the proposed approach was
approximately 16 ms. It needs approximately 40 MBytes of mem-
ory. The experimental results have been obtained using a camera
resolution of 640 � 480 pixels and a laptop with an Intel Core 2
duo at 2.0 GHz.
6. Conclusions

This paper presents the omnidirectional vision system devel-
oped for the CAMBADA MSL robotic soccer team, from the calibra-
tion to the object detection. We presented several algorithms for
the calibration of the most important parameters of the vision sys-
tem and we proposed efficient color-based algorithms for object
detection. Moreover, we proposed a solution for the detection of
arbitrary FIFA balls, one of the current challenges in the MSL.

The CAMBADA team won the last three editions of the Portu-
guese Robotics Festival, ranked 5th in RoboCup 2007, won the Rob-
oCup 2008 and ranked 3rd in RoboCup 2009, demonstrating the
effectiveness of our vision algorithms in a competition environ-
ment. As far as we know, no previous work has been published
describing all the steps of the design of an omnidirectional vision
system. Moreover, some of the algorithms presented in this paper
vision system for soccer robots: From calibration to object detection. Me-
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are state-of-the-art, as demonstrated by the first place obtained in
the mandatory technical challenge in RoboCup 2009, where the ro-
bots have to play with an arbitrary standard FIFA ball.

We are currently working in the automatic calibration of the in-
verse distance mapping and in efficient algorithms for autonomous
color calibration, based on region growing. Regarding the object
detection algorithms, as we have reduced the processing time to
a few milliseconds, we are working on the acquisition of higher
resolution images, capturing only a region of interest. The idea of
work with higher image resolutions is to improve the object detec-
tion at higher distances. Moreover, we continue the development
of algorithms for shape-based object detection, also to incorporate
as a validation of the color-based algorithms.
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