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Abstract. This paper is focused on the sensor and information fusion techniques
used by a robotic soccer team. Due to the fact that the sensor information is af-
fected by noise, and taking into account the multi-agent environment, these tech-
niques can significantly improve the accuracy of the robot world model. One of
the most important elements of the world model is the robot self-localisation.
Here, the team localisation algorithm is presented focusing on the integration of
visual and compass information. To improve the ball position and velocity relia-
bility, two different techniques have been developed. A study of the visual sensor
noise is presented and, according to this analysis, the resulting noise variation de-
pending on the distance is used to define a Kalman filter for ball position. More-
over, linear regression is used for velocity estimation purposes, both for the ball
and the robot. This implementation of linear regression hasan adaptive buffer size
so that, on hard deviations from the path (detected using theKalman filter), the
regression converges more quickly. A team cooperation method based on sharing
of the ball position is presented. Besides the ball, obstacle detection and iden-
tification is also an important challenge for cooperation purposes. Detecting the
obstacles is ceasing to be enough and identifying which obstacles are team mates
and opponents is becoming a need. An approach for this identification is pre-
sented, considering the visual information, the known characteristics of the team
robots and shared localisation among team members. The sameidea of distance
dependent noise, studied before, is used to improve this identification. Some of
the described work, already implemented before RoboCup2008, improved the
team performance, allowing it to achieve the 1st place in thePortuguese robotics
open Robótica2008 and in the RoboCup2008 world championship.

1 Introduction

Robotic soccer is nowadays a popular research domain in the area of multi robot sys-
tems. RoboCup1 is an international joint project to promote artificial intelligence, robotics
and related fields that includes several leagues, each one with a different approach, some
only at software level, others at hardware, with single or multiple agents, cooperative
or competitive [1].

In the context of RoboCup, the Middle Size League (MSL) is oneof the most chal-
lenging. In this league, each team is composed of up to 6 robots with maximum size

1 http://www.robocup.org/



of 50x50cm base, 80cm height and a maximum weight of 40Kg, playing in a field of
18x12m. The rules of the game are similar to the official FIFA rules, with required
changes to adapt for the playing robots [2]. Each robot is autonomous and has its own
sensorial means. They can communicate among them, and with an external computer
acting as a coach, through a wireless network. This coach computer cannot have any
sensor, it only knows what is reported by the playing robots.The agents should be able
to evaluate the state of the world and make decisions suitable to fulfil the cooperative
team objective.

Fig. 1. Picture of the team robots.

CAMBADA, Cooperative Autonomous Mobile roBots with Advanced Distributed
Architecture, is the Middle Size League Robotic Soccer team from Aveiro University.
The project started in 2003, coordinated by the IEETA2 ATRI3 group and involves peo-
ple working on several areas for building the mechanical structure of the robot, its hard-
ware architecture and controllers and the software development in areas such as image
analysis and processing, sensor and information fusion, reasoning and control.

To be able to accomplish the objective of playing soccer, it is important that the
agent is able to build a good representation of its environment. In the CAMBADA
team, this process is called integration. It is a step executed after image analysis and is
responsible to take raw information from the vision and other robot sensors and make a
sensor and information fusion of all the sources, estimating reliable information of the
elements on the field (e.g.: self-localisation, ball position and velocity, obstacles).

For that task it may use the values stored in the previous representation, the current
sensor measures (eventually after pre-processing) that has just arrived, the current actu-
ator commands and also information that is available from other robots sensors or world
state. This is essentially an information fusion problem. The most common methods to
tackle information fusion are based on probabilistic approaches, including Bayes rule,
Kalman filter and Monte Carlo methods [3].

All the information available from the sensors in the current cycle is kept in specific
data structures (Fig. 2), for posterior fusion and integration, based on both the current
information and the previous state of the world.

2 Instituto de Engenharia Electrónica e Telemática de Aveiro - Aveiro’s Institute of Electronic
and Telematic Engineering

3 Actividade Transversal em Robótica Inteligente - Transverse Activity on Intelligent Robotics



Fig. 2. Integrator functionality diagram.

This paper focuses on the description of some sensor and information techniques
used in the CAMBADA team. Section 2 describes the fusion of sensorial data for self-
localisation. The several aspects of ball integration are described in Section 3. Section 4
presents solutions for identification of visually detectedobstacles. Finally, Section 5
presents the conclusion and team achievements.

2 Localisation

Self-localisation of the agent is an important issue for a soccer team, as strategic moves
and positioning must be defined by positions on the field. In the MSL, the environment
is completely known, as every agent knows exactly the layoutof the game field. Given
the known mapping, the agent has then to locate itself on it.

The CAMBADA team localisation algorithm is based on the detected field lines,
with fusion information from the odometry sensors and an electronic compass. It is
based on the approach described in [4], with some adaptations. It can be seen as an error
minimisation task, with a derived measure of reliability ofthe calculated position so that
a stochastic sensor fusion process can be applied to increase the estimate accuracy [4].

From the centre of the image (the centre of the robot), radialsensors are created
around the robot, each one represented by a line with a given angle. These are called
scanlines. The image processing, in each cycle, returns a list of positions relative to the
robot where thescanlines intercept the field line markings [5]. The idea is to analyse
the detected line points, estimating a position, and through an error function describe
the fitness of the estimate. This is done by reducing the errorof the matching between
the detected lines and the known field lines (Fig. 3). The error function must be defined
considering the substantial amount of noise that affect thedetected line points which
would distort the representation estimate [4].

Although the odometry measurement quality is much affectedwith time, within the
reduced cycle times achieved in the application, consecutive readings produce accept-
able results and thus, having the visual estimation, it is fused with the odometry values
to refine the estimate. This fusion is done based on a Kalman filter for the robot po-
sition estimated by odometry and the robot position estimated by visual information.
This approach allows the agent to estimate its position evenif no visual information is
available. However, it is not reliable to use only odometry values to estimate the posi-



a) b)

Fig. 3. Captures of an image acquired by the robot camera and processed by the vision algo-
rithms. Left a): the image acquired by the camera; Rightb): the same image after processing
with magenta dots over the detected field lines.

tion for more than a very few cycles, as slidings and frictions on the wheels produce
large errors on the estimations in short time.

The visually estimated orientation can be ambiguous, i.e. each point on the soccer
field has a symmetric position, relatively to the field centre, and the robot detects exactly
the same field lines. To disambiguate, an electronic compassis used. The orientation
estimated by the robot is compared to the orientation given by the compass and if the
error between them is larger than a predefined threshold, actions are taken. If the error
is really large, the robot assumes a mirror position. If it islarger than the acceptance
threshold, a counter is incremented. This counter forces relocation if it reaches a given
threshold. Fig. 4 shows situations where the threshold was reached and relocalisation
was forced after some cycles.

3 Ball integration

Within RoboCup several teams have used Kalman filters for theball position estima-
tion [6,7,8,9]. In [9] and [8] several information fusion methods are compared for the
integration of the ball position using several observers. In [9] the authors conclude that
the Kalman reset filter shows the best performance.

The information of the ball state (position and velocity) is, perhaps, the most im-
portant, as it is the main object of the game and is the base over which most decisions
are taken. Thus, its integration has to be as reliable as possible. To accomplish this,
a Kalman filter implementation was created to filter the estimated ball position given
by the visual information, and a linear regression was applied over filtered positions to
estimate its velocity.

3.1 Ball position

It is assumed that the ball velocity is constant between cycles. Although that is not
true, due to the short time variations between cycles, around 40 milliseconds, and given
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Fig. 4. Illustration of two situations where relocalisation was forced. Lefta): the camera was
covered while the robot moved. The estimated orientation error degrades progressively and after
getting higher than the threshold, the cycle count starts and forces relocation; Rightb): the robot
tilted. The estimated orientation error is immediately affected by more than threshold and the
cycle count starts and forces relocation.

the noisy environment and measurement errors, it is a ratheracceptable model for the
ball movement. Thus, no friction is considered to affect theball, and the model doesn’t
include any kind of control over the ball. Therefore, given the Kalman filter formulation
(described in [10]), the assumed state transition model is given by

Xk =

[

1 ∆T

0 1

]

Xk−1

whereXk is the state vector containing the position and velocity of the ball. Technically,
there are two vectors of this kind, one for each cartesian dimension (x,y). This velocity
is only internally estimated by the filter, as the robot sensors can only take measure-
ments on the ball position. After defining the state transition model based on the ball
movement assumptions described above and the observation model, the description of
the measurements and process noises are important issues toattend. The measurements
noise can be statistically estimated by taking measurements of a static ball position at
known distances (Fig. 5).

The standard deviation of those measurements is used to calculate the variance and
thus define the measurements noise parameter. In practice, the measurements of the
static ball were taken while the robot was rotating over itself, to simulate movement and
the trepidation it causes, so that the measurements were as close to real game conditions
as possible. Some of the results are illustrated in Fig. 5.

A relation between the distance of the ball to the robot and the measurements stan-
dard deviation is modeled by the 2nd degree polynomial best fitting the data set in a



Fig. 5. Noisy position of a static ball taken from a rotating robot.

least-squares sense (Fig. 6). A 1st degree polynomial does not fit the data properly, and
assumes negative values for positive distance, which is notacceptable. Given the few
known points, a 3rd degree polynomial would perfectly fit all4 of them. However, these
known points are also estimated and thus cannot be taken as exact. For that reason, a
curve that would exactly fit them is not desirable.

Fig. 6. Representation of the standard deviation value for variable distance to the robot. Data set
points as blue dots. 1st degree polynomial as dashed line, 2nd degree polynomial as solid line.

As for the process noise, this is not trivial to estimate, since there is no way to
take independent measurements of the process to estimate its standard deviation. The
process noise is represented by a matrix containing the covariances correspondent to
the state variable vector.

Empirically, one could verify that forcing a near null process noise causes the filter
to practically ignore the read measures, leading the filter to emphasise the model pre-
diction. This makes it too smooth and therefore inappropriate. On the other hand, if it
is too high, the read measures are taken into too much accountand the filter returns the
measures themselves.

To face this situation, one had to find a compromise between stability and reaction.
Given the nature of the two components of the filter state, position and speed, one may
consider that their errors do not correlate.

Because we assume a uniform movement model that we know is notthe true nature
of the system, we know that the speed calculation of the modelis not very accurate. A



process noise covariance matrix was empirically estimated, based on several tests, so
that a good smoothness/reactivity relationship was kept.

In practice, this approach proved to improve the estimationof the ball position.
Fig. 7 represents a capture of a ball movement, where the black dots are the ball posi-
tions estimated by the robot visual sensors and thus are unfiltered. Red stars represent
the position estimations after applying the Kalman filter. The ball was thrown against
the robot and deviated accordingly and the robot position isrepresented by the black star
in its centre and its respective radius. It is easily perceptible that the unfiltered positions
are affected by much noise and the path of the ball after the collision is deviated from
the real path. The filtered positions however, seem to give a much better approximation
to the real path taken by the ball.

Fig. 7. Plot of a ball movement situation.

Using the filtera-priori estimation, a system to detect great differences between the
expected and read positions was implemented, allowing to detect hard deviations on the
ball path.

3.2 Ball velocity

The calculation of the ball velocity is a feature becoming more and more important
over the time. It allows that better decisions can be implemented based on the ball
speed value and direction. Assuming the same ball movement model described before,
constant ball velocity between cycles and no friction considered, one could theoretically
calculate the ball velocity by simple instantaneous velocity of the ball with the first
order derivative of each component∆D

∆T
, being∆D the displacement on consecutive

measures and∆T the time interval between consecutive measures. However, given the
noisy environment it is also predictable that this approachwould be greatly affected by
that noise and thus its results would not be satisfactory (asit is easily visible in Fig.
8.a).



To keep a calculation of the object velocity consistent withits displacement, an
implementation of a linear regression algorithm was chosen. This approach based on
linear regression [11] is similar to the velocity estimation described in [6]. By keeping
a buffer of the lastm measures of the object position and sampling instant (in this case
buffers of 9 samples were used), one can calculate a regression line to fit the positions of
the object. Since the object position is composed by two coordinates(x,y), we actually
have two linear regression calculations, one for each dimension, although it is made in
a transparent way, so the description in this section is presented generally, as if only one
dimension was considered.

When applied over the positions estimated by the Kalman filter, the linear regression
velocity estimations are much more accurate than the instant velocities calculated by
∆D

∆T
, as visible in Fig. 8.b.

a) b)

Fig. 8. Velocity representation using: Left,a): consecutive measures displacement; Right,b):
linear regression over Kalman filtered positions.

In order to try to make the regression converge more quickly on deviations of the
ball path, a reset feature was implemented, which allows deletion of the older values,
keeping only then most recent ones, allowing a control of the used buffer size.This
reset results from the interaction with the Kalman filter described above, which triggers
the velocity reset when it detects a hard deviation on the ball path.

Although in this case the Kalman filter internal functioningestimates a velocity,
the obtained values were tested to confirm if the linear regression of the ball positions
was still needed. Tests showed that the velocity estimated by the Kalman filter has
a slower response than the linear regression estimation when deviations occur. Given
this, the linear regression was used to estimate the velocity because quickness of con-
vergence was preferred over the slightly smoother approximation of the Kalman filter
in the steady state. That is because in the game environment,the ball is very dynamic,
it constantly changes its direction and thus a convergence in less than half the cycles is
much preferred.



3.3 Team ball position sharing

Due to the highly important role that the ball has in a soccer game, when a robot can-
not detect it by its own visual sensors (omni or frontal camera), it may still know the
position of the ball, through sharing of that knowledge by the other team mates.

The ball data structure include a field with the number of cycles it was not visible
by the robot, meaning that the ball position given by the vision sensors can be the “last
seen” position. When the ball is not visible for more than a given number of cycles, the
robot assumes that it cannot detect the ball on its own. When that is the case, it uses the
information of the ball communicated by the other running team mates to know where
the ball is. This can be done through a function to get the statistics on a set of positions,
mean and standard deviation, to get the mean value of the position of the ball seen by
the team mates and assume it as its own.

Another approach is to simply use the ball position of the team mate that is closer to
the ball, being the one that theoretically have more confidence in the detection. What-
ever the case, the robot assumes that ball position as its own. When detecting the ball
on its own, there is also the need to validate that information. Currently the seen ball
is only considered if it is within a given margin inside the field of play as there would
be no point in trying to play with a ball outside the field. Also, a maximum detection
distance is considered, because of the large image distortion at long distances. Fig. 9
illustrates the general ball integration activity diagram.

Fig. 9. Ball integration activity diagram.

4 Obstacle detection and sharing

An increasing necessity felt by the team, to improve its performance, is the need for a
better obstacle detection and sharing of obstacle information among team mates. This



need is important to ensure a global idea of the field occupancy, since the team for-
mation usually keeps the robots spread across the field. Witha good cover of field
obstacles, passlines and dribbling corridors can be estimated more easily allowing im-
provements on team strategy and coordination. According toRoboCup rules, the robots
are mainly black. Since in game robots play autonomously, every obstacles in the field
are the robots themselves (occasionally the referee, whichis recommended to have
black/dark pants). The vision algorithm take advantage of this fact and detects the ob-
stacles by evaluating blobs of black colour inside the field of play [12]. Through the
mapping of image positions to real metric positions, obstacles are identified by their
centre and left and right limits. The integration is then responsible for the identification
of the obstacles.

In a first step, and since the maximum size of the robots is known, visual obstacles
are separated by size. An obstacle can be a candidate to be a robot if it has acceptable
dimensions, always considering an error margin, dependingon the distance to it. With
the known team mates positions (shared via wireless), a matching is tried by testing the
obstacle estimated centre with the team mate position, considering the robot radius plus
an error margin as matching area (Fig. 10.a)).

In a second step, the remaining large obstacles are also compared with the team
mates not previously identified. These large obstacles are usually due to the robots
being together, forming a unique black blob. In this case, the idea is somewhat opposed
to singular obstacles, since in this case, the team mate position is to be tested with the
obstacle area. A positive identification of a team mate within the detected obstacle area
results in the division of the obstacle in 2 parts, a team mateobstacle and an opponent
obstacle (Fig. 11).

The obstacles identified as team mates and opponents can afterwards be treated
differently for team cooperation purposes.

5 Conclusion

The work already accomplished concerning sensor and information fusion, especially
ball information treatment, helped to maintain a more reliable description of the state
of the world.

The techniques chosen for information and sensor fusion proved to be effective
in accomplishing their objectives. The Kalman filter allowsto filter the noise on the
ball position and provides an important prediction featurewhich allows fast detection
of deviations of the ball path. The linear regression used toestimate the velocity is
also effective, and combined with the deviation detection based on the Kalman filter
prediction error, provides a faster way to recalculate the velocity in the new trajectory.

The increasing reliability of the ball position and velocity lead to a better ball tra-
jectory evaluation. This allowed the development of a more effective goalie action, as
well as other behaviours, such as ball interception behaviours and pass reception.

The obtained preliminary results regarding obstacle identification, provide tools for
an improvement of the overall team coordination and strategic play.



a) b)

c) d)

Fig. 10. Identification of single obstacles. Top Lefta): When a CAMBADA robot is on, the de-
tected obstacles estimated centres are compared with the known position and tested if they are
within the robot radius; the left obstacle is within the CAMBADA radius, the right one is not;
Top Rightb): A screenshot of the CAMBADA base station, with 3 robots localised; Bottom Left
c): an image acquired from the middle robot, with robots 1 and 3 visible and other 2 single obsta-
cles (opponents); Bottom Rightd): the same image processed where all the single obstacles are
detected. 1 and 3 are the correctly detected CAMBADA robots,while the other 2 are marked as
opponents.

The accomplished work improved the team performance, allowing it to distinctively
achieve the 1st place in the Portuguese robotics open Robótica2008 and the 1st place in
the RoboCup2008.
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Fig. 11. Detection of multiple obstacles. The CAMBADA robot is matched as part of the detected
obstacle, resulting in a division of the obstacle in 2 (team mate and opponent)
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