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Abstract. This paper is focused on the sensor and information fusicmiques
used by a robotic soccer team. Due to the fact that the semfgomiation is af-
fected by noise, and taking into account the multi-agentrenment, these tech-
nigues can significantly improve the accuracy of the robatidvmodel. One of
the most important elements of the world model is the robtitlgealisation.
Here, the team localisation algorithm is presented fogusimthe integration of
visual and compass information. To improve the ball positad velocity relia-
bility, two different techniques have been developed. Algtof the visual sensor
noise is presented and, according to this analysis, thétiresnoise variation de-
pending on the distance is used to define a Kalman filter foiposition. More-
over, linear regression is used for velocity estimatiorppses, both for the ball
and the robot. This implementation of linear regressiorameedaptive buffer size
so that, on hard deviations from the path (detected usingléhman filter), the
regression converges more quickly. A team cooperation agdihsed on sharing
of the ball position is presented. Besides the ball, obstdektection and iden-
tification is also an important challenge for cooperationppses. Detecting the
obstacles is ceasing to be enough and identifying whichaclest are team mates
and opponents is becoming a need. An approach for this fabextion is pre-
sented, considering the visual information, the known ati@ristics of the team
robots and shared localisation among team members. Theidamef distance
dependent noise, studied before, is used to improve thigifibation. Some of
the described work, already implemented before RoboCu2ddproved the
team performance, allowing it to achieve the 1st place irPthituguese robotics
open Robo6tica2008 and in the RoboCup2008 world champipnsh

1 Introduction

Robotic soccer is nowadays a popular research domain inrélaecd multi robot sys-
tems. RoboCubis an international joint project to promote artificial iigence, robotics
and related fields that includes several leagues, each dma different approach, some
only at software level, others at hardware, with single oltiple agents, cooperative
or competitive [1].

In the context of RoboCup, the Middle Size League (MSL) is ohtae most chal-
lenging. In this league, each team is composed of up to 6 sabith maximum size
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of 50x50cm base, 80cm height and a maximum weight of 40Kgipdgin a field of
18x12m. The rules of the game are similar to the official Flkkes, with required
changes to adapt for the playing robots [2]. Each robot isrearhous and has its own
sensorial means. They can communicate among them, and nvgiktarnal computer
acting as a coach, through a wireless network. This coactpatancannot have any
sensor, it only knows what is reported by the playing robbte agents should be able
to evaluate the state of the world and make decisions saitatfulfil the cooperative
team objective.

Fig. 1. Picture of the team robots.

CAMBADA, Cooperative Autonomous Mobile roBots with Advanced Distributed
Architecture, is the Middle Size League Robotic Soccer team from Aveirovehsity.
The project started in 2003, coordinated by the IEEFARI® group and involves peo-
ple working on several areas for building the mechanicatstire of the robot, its hard-
ware architecture and controllers and the software dewedmpin areas such as image
analysis and processing, sensor and information fusiaspréng and control.

To be able to accomplish the objective of playing soccess itriportant that the
agent is able to build a good representation of its envirarinla the CAMBADA
team, this process is called integration. It is a step execatter image analysis and is
responsible to take raw information from the vision and otbbot sensors and make a
sensor and information fusion of all the sources, estingatifiable information of the
elements on the field (e.g.: self-localisation, ball positand velocity, obstacles).

For that task it may use the values stored in the previougseptation, the current
sensor measures (eventually after pre-processing) teatisizarrived, the current actu-
ator commands and also information that is available frameotobots sensors or world
state. This is essentially an information fusion probleitme Tost common methods to
tackle information fusion are based on probabilistic apphes, including Bayes rule,
Kalman filter and Monte Carlo methods [3].

All the information available from the sensors in the cut®ycle is kept in specific
data structures (Fig. 2), for posterior fusion and intégmatbased on both the current
information and the previous state of the world.
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Fig. 2. Integrator functionality diagram.

This paper focuses on the description of some sensor andriafmn techniques
used in the CAMBADA team. Section 2 describes the fusion néedal data for self-
localisation. The several aspects of ball integration asedbed in Section 3. Section 4
presents solutions for identification of visually detectdastacles. Finally, Section 5
presents the conclusion and team achievements.

2 Localisation

Self-localisation of the agent is an important issue foraeoteam, as strategic moves
and positioning must be defined by positions on the field. énM$L, the environment
is completely known, as every agent knows exactly the lagbtiie game field. Given
the known mapping, the agent has then to locate itself on it.

The CAMBADA team localisation algorithm is based on the dtsd field lines,
with fusion information from the odometry sensors and arctebmic compass. It is
based on the approach described in [4], with some adapsatiaran be seen as an error
minimisation task, with a derived measure of reliabilitytloé calculated position so that
a stochastic sensor fusion process can be applied to irctteagstimate accuracy [4].

From the centre of the image (the centre of the robot), restiabors are created
around the robot, each one represented by a line with a givgle aThese are called
scanlines. The image processing, in each cycle, returns a list of jpositrelative to the
robot where thescanlines intercept the field line markings [5]. The idea is to analyse
the detected line points, estimating a position, and thincarg error function describe
the fitness of the estimate. This is done by reducing the efrtire matching between
the detected lines and the known field lines (Fig. 3). Therdtmaction must be defined
considering the substantial amount of noise that affecd#étected line points which
would distort the representation estimate [4].

Although the odometry measurement quality is much affestédtime, within the
reduced cycle times achieved in the application, consexzutiadings produce accept-
able results and thus, having the visual estimation, itsefuwith the odometry values
to refine the estimate. This fusion is done based on a Kalmian fir the robot po-
sition estimated by odometry and the robot position estahdity visual information.
This approach allows the agent to estimate its position éwemvisual information is
available. However, it is not reliable to use only odometajues to estimate the posi-
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Fig. 3. Captures of an image acquired by the robot camera and psutéssthe vision algo-
rithms. Lefta): the image acquired by the camera; Right the same image after processing
with magenta dots over the detected field lines.

tion for more than a very few cycles, as slidings and frictiam the wheels produce
large errors on the estimations in short time.

The visually estimated orientation can be ambiguous, aehgoint on the soccer
field has a symmetric position, relatively to the field ceydred the robot detects exactly
the same field lines. To disambiguate, an electronic comigassed. The orientation
estimated by the robot is compared to the orientation giwethé compass and if the
error between them is larger than a predefined thresholdnacre taken. If the error
is really large, the robot assumes a mirror position. If ilaiger than the acceptance
threshold, a counter is incremented. This counter fordesaéon if it reaches a given
threshold. Fig. 4 shows situations where the threshold washed and relocalisation
was forced after some cycles.

3 Ball integration

Within RoboCup several teams have used Kalman filters fobtlleposition estima-
tion [6,7,8,9]. In [9] and [8] several information fusion theds are compared for the
integration of the ball position using several observer$9] the authors conclude that
the Kalman reset filter shows the best performance.

The information of the ball state (position and velocity) perhaps, the most im-
portant, as it is the main object of the game and is the basexdvieh most decisions
are taken. Thus, its integration has to be as reliable ashp@s3o accomplish this,
a Kalman filter implementation was created to filter the eated ball position given
by the visual information, and a linear regression was appver filtered positions to
estimate its velocity.

3.1 Ball position

It is assumed that the ball velocity is constant betweenesychlthough that is not
true, due to the short time variations between cycles, ard@milliseconds, and given
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Fig. 4. lllustration of two situations where relocalisation wascked. Lefta): the camera was
covered while the robot moved. The estimated orientatioor @legrades progressively and after
getting higher than the threshold, the cycle count stadsfartes relocation; Right): the robot
tilted. The estimated orientation error is immediatelyeaféd by more than threshold and the
cycle count starts and forces relocation.

the noisy environment and measurement errors, it is a ratteaptable model for the
ball movement. Thus, no friction is considered to affectiib#, and the model doesn’t
include any kind of control over the ball. Therefore, givea Kalman filter formulation
(described in [10]), the assumed state transition modeVendoy

1 AT
Xp = {O 1 :|Xk—1

whereXj, is the state vector containing the position and velocityefliall. Technically,
there are two vectors of this kind, one for each cartesiaredsion &,y). This velocity

is only internally estimated by the filter, as the robot sess@an only take measure-
ments on the ball position. After defining the state traasitinodel based on the ball
movement assumptions described above and the observatidel nthe description of
the measurements and process noises are important isatesii. The measurements
noise can be statistically estimated by taking measuresvadra static ball position at
known distances (Fig. 5).

The standard deviation of those measurements is used tdatalthe variance and
thus define the measurements noise parameter. In pradteendéasurements of the
static ball were taken while the robot was rotating ovelffitée simulate movement and
the trepidation it causes, so that the measurements wel@sagc real game conditions
as possible. Some of the results are illustrated in Fig. 5.

A relation between the distance of the ball to the robot aechteasurements stan-
dard deviation is modeled by the 2nd degree polynomial betistgfithe data set in a
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Fig. 5. Noisy position of a static ball taken from a rotating robot.

least-squares sense (Fig. 6). A 1st degree polynomial dud# the data properly, and
assumes negative values for positive distance, which isomgptable. Given the few
known points, a 3rd degree polynomial would perfectly fidadif them. However, these
known points are also estimated and thus cannot be takeraat &or that reason, a
curve that would exactly fit them is not desirable.
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Fig. 6. Representation of the standard deviation value for vagididtance to the robot. Data set
points as blue dots. 1st degree polynomial as dashed lidej@yree polynomial as solid line.

As for the process noise, this is not trivial to estimatecsithere is no way to
take independent measurements of the process to estimataridard deviation. The
process noise is represented by a matrix containing therieongs correspondent to
the state variable vector.

Empirically, one could verify that forcing a near null prgsenoise causes the filter
to practically ignore the read measures, leading the fitesmiphasise the model pre-
diction. This makes it too smooth and therefore inappraeri@n the other hand, if it
is too high, the read measures are taken into too much acaadrihe filter returns the
measures themselves.

To face this situation, one had to find a compromise betweshilisy and reaction.
Given the nature of the two components of the filter stateitipasand speed, one may
consider that their errors do not correlate.

Because we assume a uniform movement model that we know ikentue nature
of the system, we know that the speed calculation of the miededt very accurate. A



process noise covariance matrix was empirically estimdiaded on several tests, so
that a good smoothness/reactivity relationship was kept.

In practice, this approach proved to improve the estimatibthe ball position.
Fig. 7 represents a capture of a ball movement, where th& Hiats are the ball posi-
tions estimated by the robot visual sensors and thus araeuafil Red stars represent
the position estimations after applying the Kalman filtdreTall was thrown against
the robot and deviated accordingly and the robot positioesesented by the black star
in its centre and its respective radius. It is easily peibépthat the unfiltered positions
are affected by much noise and the path of the ball after thisioa is deviated from
the real path. The filtered positions however, seem to giveehrbetter approximation
to the real path taken by the ball.
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Fig. 7. Plot of a ball movement situation.

Using the filtera-priori estimation, a system to detect great differences between th
expected and read positions was implemented, allowingtertkard deviations on the
ball path.

3.2 Ball velocity

The calculation of the ball velocity is a feature becomingrenand more important
over the time. It allows that better decisions can be impleea: based on the ball
speed value and direction. Assuming the same ball movemed¢hdescribed before,
constant ball velocity between cycles and no friction cdesgd, one could theoretically
calculate the ball velocity by simple instantaneous véjoof the ball with the first
order derivative of each componeﬁt% being AD the displacement on consecutive
measures and7 the time interval between consecutive measures. Howewven the
noisy environmentit is also predictable that this appromohld be greatly affected by
that noise and thus its results would not be satisfactoryt (@seasily visible in Fig.
8.a).



To keep a calculation of the object velocity consistent viithdisplacement, an
implementation of a linear regression algorithm was cho$éis approach based on
linear regression [11] is similar to the velocity estimatiescribed in [6]. By keeping
a buffer of the lastm measures of the object position and sampling instant (81dhse
buffers of 9 samples were used), one can calculate a regnds® to fit the positions of
the object. Since the object position is composed by twodinateg(x,y), we actually
have two linear regression calculations, one for each deémanalthough it is made in
a transparent way, so the description in this section isgitesl generally, as if only one
dimension was considered.

When applied over the positions estimated by the Kalmaum,filie linear regression
velocity estimations are much more accurate than the ingtdacities calculated by

AD iaihla in i
AT as visible in Fig. 8.b.
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Fig. 8. Velocity representation using: Lefs): consecutive measures displacement; Right,
linear regression over Kalman filtered positions.

In order to try to make the regression converge more quicklgeviations of the
ball path, a reset feature was implemented, which allowstidel of the older values,
keeping only then most recent ones, allowing a control of the used buffer Sibés
reset results from the interaction with the Kalman filteratéed above, which triggers
the velocity reset when it detects a hard deviation on thiepladih.

Although in this case the Kalman filter internal functioniegtimates a velocity,
the obtained values were tested to confirm if the linear wsioa of the ball positions
was still needed. Tests showed that the velocity estimageth® Kalman filter has
a slower response than the linear regression estimation wéeations occur. Given
this, the linear regression was used to estimate the velbeitause quickness of con-
vergence was preferred over the slightly smoother appratxamn of the Kalman filter
in the steady state. That is because in the game environtherall is very dynamic,
it constantly changes its direction and thus a convergeniess than half the cycles is
much preferred.



3.3 Team ball position sharing

Due to the highly important role that the ball has in a soceeng, when a robot can-
not detect it by its own visual sensors (omni or frontal caaeit may still know the
position of the ball, through sharing of that knowledge by dither team mates.

The ball data structure include a field with the number of egdt was not visible
by the robot, meaning that the ball position given by theorigensors can be the “last
seen” position. When the ball is not visible for more thamweginumber of cycles, the
robot assumes that it cannot detect the ball on its own. Whegrig the case, it uses the
information of the ball communicated by the other runnirgntemates to know where
the ball is. This can be done through a function to get théstitze on a set of positions,
mean and standard deviation, to get the mean value of théquosf the ball seen by
the team mates and assume it as its own.

Another approach is to simply use the ball position of theteaate that is closer to
the ball, being the one that theoretically have more conéidém the detection. What-
ever the case, the robot assumes that ball position as its\&van detecting the ball
on its own, there is also the need to validate that infornmat@urrently the seen ball
is only considered if it is within a given margin inside thddief play as there would
be no point in trying to play with a ball outside the field. Algomaximum detection
distance is considered, because of the large image d@tatilong distances. Fig. 9

illustrates the general ball integration activity diagram
with omni vision

True
Fill datastructure

with front vision

Fill data structure
with team ball

Validate omni
vision position

Ball visible on
omni vision

False

Validate front
vision position

Ball visible on
front vision

False

Fill datastructure
with ball not
visible

Fig. 9. Ball integration activity diagram.

4 Obstacle detection and sharing

An increasing necessity felt by the team, to improve its aneince, is the need for a
better obstacle detection and sharing of obstacle infooma@mong team mates. This



need is important to ensure a global idea of the field occupasiece the team for-
mation usually keeps the robots spread across the field. &/gbod cover of field
obstacles, passlines and dribbling corridors can be etgthmaore easily allowing im-
provements on team strategy and coordination. AccordiptmoCup rules, the robots
are mainly black. Since in game robots play autonomoussryesbstacles in the field
are the robots themselves (occasionally the referee, wikicacommended to have
black/dark pants). The vision algorithm take advantagdisffact and detects the ob-
stacles by evaluating blobs of black colour inside the fidiglay [12]. Through the
mapping of image positions to real metric positions, obdetaare identified by their
centre and left and right limits. The integration is therpassible for the identification
of the obstacles.

In a first step, and since the maximum size of the robots is kneigual obstacles
are separated by size. An obstacle can be a candidate to betdfrib has acceptable
dimensions, always considering an error margin, deperatinthhe distance to it. With
the known team mates positions (shared via wireless), ahimatés tried by testing the
obstacle estimated centre with the team mate positionjaetiisg the robot radius plus
an error margin as matching area (Fig. 10.a)).

In a second step, the remaining large obstacles are alsoarethwiith the team
mates not previously identified. These large obstacles swally due to the robots
being together, forming a unique black blob. In this casejdlea is somewhat opposed
to singular obstacles, since in this case, the team maté@os to be tested with the
obstacle area. A positive identification of a team mate withe detected obstacle area
results in the division of the obstacle in 2 parts, a team robgtacle and an opponent
obstacle (Fig. 11).

The obstacles identified as team mates and opponents cawatfle be treated
differently for team cooperation purposes.

5 Conclusion

The work already accomplished concerning sensor and irdtiom fusion, especially
ball information treatment, helped to maintain a more bdéiadescription of the state
of the world.

The techniques chosen for information and sensor fusiomeprdo be effective
in accomplishing their objectives. The Kalman filter allotesfilter the noise on the
ball position and provides an important prediction featuhéch allows fast detection
of deviations of the ball path. The linear regression usedstimate the velocity is
also effective, and combined with the deviation detectiasda on the Kalman filter
prediction error, provides a faster way to recalculate #leaity in the new trajectory.

The increasing reliability of the ball position and velgdi¢éad to a better ball tra-
jectory evaluation. This allowed the development of a mdi@céve goalie action, as
well as other behaviours, such as ball interception behasiand pass reception.

The obtained preliminary results regarding obstacle ifleation, provide tools for
an improvement of the overall team coordination and stiafeay.
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Fig. 10. Identification of single obstacles. Top Left When a CAMBADA robot is on, the de-
tected obstacles estimated centres are compared with tvenkposition and tested if they are
within the robot radius; the left obstacle is within the CAKBA radius, the right one is not;

Top Rightb): A screenshot of the CAMBADA base station, with 3 robots liseal; Bottom Left

¢): an image acquired from the middle robot, with robots 1 angible and other 2 single obsta-
cles (opponents); Bottom Righ): the same image processed where all the single obstacles are
detected. 1 and 3 are the correctly detected CAMBADA robastsle the other 2 are marked as
opponents.

The accomplished work improved the team performance, allpwto distinctively

achieve the 1st place in the Portuguese robotics open RaB008 and the 1st place in
the RoboCup2008.
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Fig. 11. Detection of multiple obstacles. The CAMBADA robot is magdhas part of the detected
obstacle, resulting in a division of the obstacle in 2 (teaatexand opponent)
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