
Predictive Control for Behavior Generation of

Omni-Directional Robots

João Cunha, Nuno Lau, João Rodrigues, Bernardo Cunha, José Luis Azevedo

IEETA / Department of Electronics, Telecommunications and Informatics
University of Aveiro, Portugal

{joao.cunha,nunolau,jmr,mbc,jla}@ua.pt

Abstract. This paper describes the approach developed by the CAM-
BADA robotic soccer team to address physical constraints regarding
omni-directional motion control, with special focus on system delay.
CAMBADA robots carry inherent delays which associated with discrete
time control results in non-instant, non-continuous control degrading the
performance over time. Besides a natural maximum velocity, CAMBADA
robots have also a maximum acceleration limit implemented at software
level to provide motion stability as well as current peaks avoidance on
DC motors. Considering the previous constraints, such as the cycle time
and the overall sensor-action delay, compensations can be made to im-
prove the robot control. Since CAMBADA robots are among the slowest
robots in the RoboCup Medium Size League, such compensations can
help to improve both several behaviours as well as a better field coverage
formation.

1 Introduction

CAMBADA1 is the University of Aveiro’s robotic soccer team. The project was
started in 2003 by the IEETA2 ATRI3 research group which involves researchers
from different scientific areas such as image analysis and processing, control,
artificial intelligence, multi-agent coordination, sensor fusion.

CAMBADA currently participates in RoboCup’s Middle Size League. RoboCup4

is an international project focused on fostering innovation in robotics and re-
lated fields. In this league a team of 4 to 6 robots with maximum dimensions of
50cm×50cm×80cm and a maximum weight of 40kg play soccer in a 12m×18m

field complying with robot-adapted official FIFA rules [1].
Given the dynamic environment of a soccer game, accurate robot movement

plays a crucial role since most of the game duration the team’s success depends

1 CAMBADA is an acronym for Cooperative Autonomous Mobile roBots with Ad-
vanced Distributed Architecture.

2 Instituto de Engenharia Electrónica e Telemática de Aveiro - Aveiro’s Institute of
Electronic and Telematic Engineering

3 Actividade Transversal em Robótica Inteligente - Transverse Activity on Intelligent
Robotics

4 http://www.robocup.org/

Fig. 1. A CAMBADA robot.

on placing the robot in the desired position. This paper explains some meth-
ods applied in the CAMBADA project to effectively control an omni-directional
robot. In Section 2 an overview of the CAMBADA robot’s motion and vari-
ous physical constraints are presented. The predictive control implementation is
discussed in Section 3. Section 4 describes the methods involved in the parame-
ters estimation of the model and the respective results are in Section 5. Finally,
Section 6 presents the conclusions.

2 Omni-Directional Robot Motion

As stated before, CAMBADA robots have an omni-directional motion. This is
accomplished by a set of 3 swedish wheels placed at the periphery of the robot
at angles that differ 120 degrees from each other. Such configuration enables a
robot to move in any direction while facing any orientation. Since all degrees of
freedom are controlable the robot’s motion is holonomic.

Fig. 2. Detail of the wheel configuration which enables an holonomic motion.

To successfully move a robot to a desired pose, setpoints to each of the robot’s
wheels must be provided at every control cycle. This is firstly done by translating
the desired pose from field coordinates to robot coordinates which gives an offset

relative to the robot’s current pose. From this offset, error measurements are
determined that are then applied to PID controllers to determine the linear and
angular velocities to be applied at the robot’s frame. These are in turn mapped to
setpoints, the velocities to be applied at each wheel, using the robot’s kinematic
model [2], to achieve the desired movement.

Ideally the robot’s linear and angular velocities would be mutually indepen-
dent. This means that a robot could move in a straight line while rotating over
itself. In practice, such control is negatively affected by a diverse array of factors
that if ignored results in an undesired robot movement.

While rotating and moving at the same time, the robot deviates considerably
from the ideal straight line. This deviation is consistently to the right when
rotating clockwise and to the left when rotating counter-clockwise.

−2 −1.5 −1 −0.5 0 0.5
−1

0

1

2

3

4

5

XX world coordinate(m)

Y
Y

 w
or

ld
 c

oo
rd

in
at

e(
m

)

Fig. 3. Deviation in the robot movement when it rotates and moves simultaneously.
The dashed line is the real robot path and the solid line would be the ideal straight
path. The robot is rotating clockwise and moving towards (0,0).

An initial solution to minimize the deviation consists in rotating the robot
at the initial position and then applying the linear velocity. This solution is not
ideal since it doesn’t take advantage of holonomic motion. Also, CAMBADA
robots are among the slowest moving robot teams in the MSL [3][4][5][6], so this
solution only emphasizes the speed difference.

The physical restraints affecting holonomic motion control dealt with in this
paper are: discrete time control, maximum acceleration, actuator saturation, and
control latency. Given the difficulty in quantification, wheel slippage and slacks
are not accounted for the solution of the problem at this stage.

2.1 Discrete Time Control

Firstly, no digital computer closed loop control exists that can update its output
on a continuous basis since these systems are discrete in nature. Also no real

system cannot read their sensors measurements, process and apply commands
instantaneously. Therefore discrete time control usually happens sequentially
over a course of time defined as control cycle. This means that a command
applied at any given instant is active until the command of the following cycle
is applied.

This limitation prevents some robot movements as is the case of moving in
a straight line while rotating over its center, as this movement would require
continuous variations of the wheels speed setup. Using constant setups during
the control cycle, the robot will describe an arc instead of moving over a straight
line. The solution is to make the initial and final positions of the arc described
in each control cycle lie on the pretended straight line. This can be obtained
applying an angle offset to the linear velocity vector. Besides this angular offset,
the speed needs to be increased since the length of an arc is longer than the
length of its corresponding chord.

This problem can be addressed mathematically using the circle geometry and
the chord-arc relationship. The direction deviation is given by the angle between
the chord and the tangent to the arc in the chord’s initial position. This shall be
half the integral of the angular velocity. The chord-arc relationship states that
given a chord and its central angle, the length of the arc connecting the initial
and final positions of the chord is given by multiplying the chord’s length by,

ArcLength
ChordLength

= 2αr
2 sin(α)r = α

sin(α)

Since the angle used for correcting the direction is an inscribed angle, the
arc’s central angle shall be the double, as shown by Fig 4.

Fig. 4. While rotating and moving simultaneously the robot will describe a series of
arcs along the straight line.

So, as mentioned before, α = (RotationalV elocity×∆t)
2 .

In the robot, at every cycle, the length of the chord or straight line is calcu-
lated by integrating desired linear velocity to be applied over a cycle time. Then
if the desired rotational velocity is not zero the length of the arc is calculated
as mentioned above. The final velocity to be applied is obtained by deriving the
arc’s length, varc = α

sin(α) × vline.

2.2 Acceleration

Other restrictions affecting omni-directional motion are the allowed values for the
acceleration. In the RoboCup Small Size League some teams limit their robots
acceleration by wheel traction only [7]. Given the Middle Size League robot’s
dimensions, this would result in a very dangerous behavior for the robot because
if it is allowed to achieve, in a single cycle, a velocity with a different direction
from the previous cycle there is a possibility of tipping off, severely damaging the
robot’s components. Given the electric nature of the used motors such unlimited
acceleration can also cause large current peaks reducing the hardware lifetime
and battery charge.

Therefore, the CAMBADA robots have an acceleration limiter at software
level, which means that at each cycle the robot’s velocity is allowed to varies
only up to a certain amount around the previous cycle’s velocity. The velocity
then changes over time smoothly.

vcurrent

vdesired

vout

Fig. 5. Acceleration limiter. The circle represents all the velocities that can be achieved
given the maximum acceleration.

2.3 Actuator Saturation

A factor adversely affecting an omni-directional robot control is the saturation of
its different actuators. Of all the different actuators of CAMBADA robots, this
paper will focus only on the motors controlling the omni-wheels. The saturation
of the motors is an indirect indication of the maximum velocity a robot can
achieve. In the CAMBADA case, simulation results point to a maximum speed
of 2.2 m/s. This physical factor must not be overlooked. It affects not only the
proportion between linear and angular velocities but also the proportion between

the linear velocities components (vx, vy) diverting the robot from its path in case
of actuator saturation.

Assuming a saturation value C, considering the 3 omni wheels, the velocities
vx, vy and va, as the velocities along the robot’s axis and angular velocity, re-
spectively, the setpoints to apply at each wheel are calculated. Assuming that all
setpoints exceed C, if no measure is taken the robot would rotate at maximum
speed instead of moving according vx, vy and va. The solution involves deter-
mining a correction factor to be multiplied by all the velocities to be applied
[8].

This correction factor is C
|S| , where S is the highest setpoint calculated.

This ensures that one of the setpoints is applied the maximum input possible
and the others are in the original proportion before the saturation limitation. The
resulting movement will be slower than desired but the direction of movement
will be maintained while moving as fast as possible.

2.4 Delay

The final physical restraint mentioned in this paper is the system delay. In the
RoboCup Middle Size League, some teams have already addressed this issue,as
is the example of the Tribots team [9]. System delay results of the sums of all
small delays in the control loop and greatly affects the robot control. A delay
between the sensory input and the actuator output means a command calculated
based on a worldstate A will be executed on a worldstate B that may or may
not be the same as A. Considering the highly dynamic nature of a robotic soccer
game, the worldstates will most likely not be the same.

The problem worsens as the delay increases not only because the error be-
tween the worldstates increases but also because as the delay overcomes the
cycle time, more and more commands will affect the worldstate before the cur-
rent command will start to have effects. This fact explains the hard deviation
while moving and rotating simultaneously shown in Fig 3. The robot is stopped,
and will try to move and rotate. Since the command calculated in the initial cycle
will only reach the actuator some cycles later, all the control cycles in between
them will calculate the same command since the robot will not move until the
first command arrives. Ideally after the robot moved from the first command, a
new one should be input considering the robot’s new pose.

3 Predictive Control

Reflecting other teams solutions [7], a prediction module was implemented to
determine the pose of a robot when the current command will reach the ac-
tuators, given the sensed pose and a buffer storing the commands that have
already been issued but have yet executed due to the system delay. Thus, all
commands are calculated without delay. The commands considered in the buffer
of the prediction module do not reflect the desired velocities, but the actual in-
put commands at the motors, after the saturation and acceleration limiters are
taken in to account.

Considering the CAMBADA software structure [10], the desired commands
are calculated on the agent process and transmitted to the low-level commu-
nication handler process, or HWcomm, through the RTDB5, where they are
processed through the saturation and acceleration limiters before being mapped
to setpoints. In order to implement the prediction module in the agent process
where the desired commands will be calculated accounting the predicted robot
pose, the output commands of HWcomm must be sent back to the agent process,
again through the RTDB. At the agent, as each command is active for an entire
cycle and given the electric motors used, a purely uniform movement is assumed
for each cycle. Then the predicted pose,p̂tpred

for the robot is given by,

p̂tpred
= ptsensed

+ rem · ctn−1
+

∑

i

cti
∆t, i = sensed − n..sensed − 1

where

– ptsensed
is the self-localization determined pose,

– cti
is the command issued in the i-th control cycle,

– n = ⌊
tdelay

tcycle
⌋,

– rem = delay − n · ∆t

3.1 New Acceleration Limiter

Surprisingly the resulting path using predictive control was not the expected as
the robot still doesn’t move in a straight line. This is an undesired result from
the current implementation of the acceleration limiter. As can be seen in Fig 5,
if the desired velocity diverges too much from the current velocity, the output of
the limiter will be a velocity that will neither be in the desired orientation nor in
the desired norm. A solution to this problem is to increase the maximum acceler-
ation of the robot, increasing the velocity variation every control cycle. However,
simulation results showed that to compensate the large divergences between the
velocities, the acceleration would have to be increased to values where the robot’s
motion stability would be compromised. These conditions when tested revealed
another issue. While such high maximum acceleration allows for great velocity
variations from cycle to cycle, the same high variations produce a considerable
wheel slippage. Since this factor is not accounted for in the model, the resulting
prediction will be very inaccurate. Therefore, the robot will not generate the
anticipated path, as shown by Fig 6.

In this section, a new algorithm to update the velocity while complying with
a maximum acceleration is suggested which prioritizes the velocity’s direction
over its norm.

The solution involves reducing the robot speed, in order to successfully rotate,
similarly to what we humans do when driving. In order to reduce the speed by
a minimum necessary the following situations are considered:

5 Real-Time Data Base

−2 −1.5 −1 −0.5 0 0.5
−1

0

1

2

3

4

5

XX world coordinate(m)

Y
Y

 w
or

ld
 c

oo
rd

in
at

e(
m

)

−2 −1.5 −1 −0.5 0 0.5
−1

0

1

2

3

4

5

XX world coordinate(m)

Y
Y

 w
or

ld
 c

oo
rd

in
at

e(
m

)

a) b)

−2 −1.5 −1 −0.5 0 0.5
−1

0

1

2

3

4

5

XX world coordinate(m)

Y
Y

 w
or

ld
 c

oo
rd

in
at

e(
m

)

−2 −1.5 −1 −0.5 0 0.5
−1

0

1

2

3

4

5

XX world coordinate(m)

Y
Y

 w
or

ld
 c

oo
rd

in
at

e(
m

)

c) d)

Fig. 6. Robot path with different values of maximum acceleration. The dashed line
represents the real robot path while the solid line represents the simulated robot path.
a) Maximum acceleration 3m/s2. b) Maximum acceleration 5m/s2. c) Maximum ac-
celeration 7m/s2. d) Maximum acceleration 10m/s2.

Firstly, the closest point from the current velocity to the desired velocity
vector is calculated. Uniting this point to the current velocity always creates a
perpendicular line to the desired velocity. So the distance,d , between the current
velocity and the closest point will be,

d = sin(Θ) × |currentV elocity|,

where Θ is the angle difference between the desired and current velocities.

Then if the distance is larger than the maximum velocity variation allowed,
it means the robot doesn’t have enough acceleration to reach the desired ve-
locity direction. So to minimize the direction error, the output velocity of the
acceleration limiter will be in the direction of the closest point.

If the distance is smaller, that means the robot can achieve the desired di-
rection of the velocity even if not at the same norm. So the interception point
between a circumference centered at the current velocity and with a radius of
maximum velocity variation and the desired velocity vector is calculated. This
point represents the maximum velocity the robot can achieve given the maximum
acceleration limit while moving at the desired direction.

An exception must be made when the angle difference between the desired
velocity and the current velocity is greater than 90 degrees. The resulting velocity
using the perpendicular method would point in the opposite direction of the

vcurrent

vdesired

vout

vcurrent

vdesired

vout

a) b)

Fig. 7. New implementation of the acceleration limiter. Left a): Priority is given to
the direction of the desired velocity over its norm. b): When the desired velocity can’t
be achieved given the maximum acceleration the output will be in the perpendicular
line to the desired velocity that passes in the current velocity point.

desired velocity. In this case the original implementation of the acceleration
limiter is used.

4 Estimating Model Parameters

The next step is to determine the control delay. For this purpose some captures
were made while the robot moved. In these captures, the robot pose determined
by self-localization and the commands sent to the actuators were recorded. Since
the capture produces results every cycle, the delay is determined by the differ-
ence between the cycle corresponding to the first command sent and the cycle
corresponding to the robot movement. This way, it means that when the robot
pose changed the first command arrived at the motors. However, since the fram-
erate of the camera used is 25 fps, it means the delay will be in an interval
of 1

25 = 0.040 seconds. Using this method the delay affecting the CAMBADA
robots would be in [0.160; 0.200[seconds. Experiments were conducted to deter-
mine the delay with more precision, which tried to minimize the error between
the simulated robot path and the robot real path. However at this stage none
have proven trustworthy. So, as last resort, different delay values, between 0.160
and 0.200 seconds, were tested while the robot moved between the same two
points. This method showed that when delay tends to 0.200 the robot path
deviates further from the straight line. The chosen value for delay was 0.165
seconds, which provided the best resulting paths.

5 Results

Using the prediction module combined with the new acceleration limiter imple-
mentation the robot successfully moved in a straight line while rotating simul-
taneously as shown in Fig 8.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.5

1

1.5

2

2.5

3

3.5

4

XX world coordinate(m)

Y
Y

 w
or

ld
 c

oo
rd

in
at

e(
m

)

Fig. 8. The robot path using new acceleration limiter and robot pose prediction after
delay. The delay value is 0.165 seconds. The robot is rotating counter-clockwise towards
(0,0)

An experience was then conducted to compare the developed solution and
the original solution, where the robot rotates first and moves afterwards. The
experience consisted on moving the robot between two points using the previ-
ously mentioned solutions. The process was repeated ten times and the times
were recorded for every run.

With the original solution, the robot took an average 3.62 seconds to move
from one point to the other with a standard deviation of 0.11 seconds. With the
developed solution, the robot took an average 3.28 seconds to move between the
same two points with a standard deviation of 0.16 seconds.

This results in a mean time difference of 0.34 seconds. Although the improve-
ment is not considerably large, given the fast pace of a soccer game, the increased
speed might prove crucial in some game situations.

Finally an experience was conducted where the robot moved with a constant
angular velocity. Even in this adverse condition the robot performance was ac-
ceptable, even despite not moving in a straight line and producing an overshoot.

6 Conclusion

An overview of different physical constraints affecting CAMBADA robots motion
were presented with special focus on sensor-action delay. The various solutions

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

XX world coordinate(m)

Y
Y

 w
or

ld
 c

oo
rd

in
at

e(
m

)

Fig. 9. The resulting robot path with constant angular velocity. The robot is rotating
counter-clockwise towards (0,0).

developed to minimize the constraints’ effects were described. A predictor mod-
ule was implemented to address the delay affecting the robot along with an
algorithm to update the robot velocity prioritizing the velocity direction. This
initial implementation of predictive control improved robot motion and speed.

In the future the predictive control should be integrated with the existing
behaviours of CAMBADA robots, enhancing ball handling, obstacle avoidance
and team formation. For consistency a predictive model of the ball should also be
implemented to predict its position. Since the teammate’s position and velocity
is shared between all robots the predictive model can be expanded predicting
the teammates’ positions. On the other hand since robot communication is not
synchronized with the control cycle the resulting prediction might be very inac-
curate. Also predicting the opponents position is impossible since at this date
no opponent tracking is made being treated as stationary for obstacle avoidance
purposes only.

Acknowledgments

This work was partially supported by project ACORD Adaptive Coordination
of Robotic Teams, FCT/PTDC/EIA/70695/2006.

References

1. MSL Technical Committee 1997-2009: Middle Size Robot League Rules and Reg-
ulations for 2009 (2008).

2. Campion, G., Bastin, G., D’Andréa-Novel, B.: Structural Properties and Classi-
fication of Kinematic and Dynamic Models of Wheeled Mobile Robots, In: IEEE
Transactions on Robotics and Automation, Vol. 12, No. 1, February 1996.

3. Oubbati, M., Schanz, M., Buchheim, T., Levi,P.: Velocity Control of an Omni-
directional RoboCup Player with Recurrent Neural Networks, A. Bredenfeld, et
al., Eds., RoboCup 2005: Robot Soccer World Cup IX, LNCS, vol. 4020, 2006,
691-701.

4. Hafner, R., Lange S., Lauer, M., Riedmiller, M.: Brainstormers Tribots Team
Description, RoboCup International Symposium 2008, CD Proc., Suzhou, China.

5. Sato, Y., Yamaguchi, S., et al.: Hibikino-Musashi Team Description Paper,
RoboCup Int. Symposium 2008, CD Proc., Suzhou, China.

6. EtherCAT Robots win German Open, Press Release, EtherCAT Technology
Group, 8 May 2008.

7. Behnke, S., Egorova, A., Gloye, A., Rojas, R., Simon, M.: Predicting away Robot
Control Latency, Proc. of 7th RoboCup Int. Symposium, Padua, Italy, 2003

8. Plöger, P.-G.; Indiveri, G.; Paulus, J.: Motion Control of Swedish Wheeled Mobile
Robots in the Presence of Actuator Saturation, RoboCup 2006 Symposium. Pro-
ceedings : Bremen, Germany, 19th and 20th of June 2006, Bremen, 2006, RoboCup
International Symposium.

9. Lauer, M: Ego-Motion Estimation and Collision Detection for Omnidirectional
Robots, In RoboCup 2006: Robot Soccer World Cup X, LNCS. Springer, 2006

10. A. J. R. Neves, J. L. Azevedo, M. B. Cunha, N. Lau, G. Corrente, F. Santos, A.
Pereira, L. Almeida, L. S. Lopes, P. Pedreiras, J. Vieira, D. Martins, N. Figueiredo,
J. Silva, N. Filipe, I. Pinheiro: CAMBADA’2009 Team Description.

