
Universidade de Aveiro Departamento de Electrónica, Telecomunicações e

2008 Informática

Daniel Filipe de

Almeida Martins

Sistema de Processamento de Imagem para

Aplicações Robóticas

Image Processing System for Robotic Applications

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e

2008 Informática

Daniel Filipe de

Almeida Martins

Sistema de Processamento de Imagem para

Aplicações Robóticas

Image Processing System for Robotic Applications

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e

2008 Informática

Daniel Filipe de

Almeida Martins

Sistema de Processamento de Imagem para

Aplicações Robóticas

Image Processing System for Robotic Applications

dissertação apresentada à Universidade de Aveiro para cumprimento dos

requisitos necessários à obtenção do grau de Mestre em Engenharia

Electrónica e Telecomunicações, realizada sob a orientação cient́ıfica do

Doutor António José Ribeiro Neves, Professor Auxiliar Convidado do De-

partamento de Electrónica, Telecomunicações e Informática da Universidade

de Aveiro e do Doutor Armando José Formoso de Pinho, Professor Asso-

ciado do Departamento de Electrónica, Telecomunicações e Informática da

Universidade de Aveiro.

À Saruca. . .

o júri

presidente Doutor Paulo Jorge dos Santos Gonçalves Ferreira

professor catedrático da Universidade de Aveiro.

Doutor Armando José Formoso de Pinho

professor associado da Universidade de Aveiro

Doutor Alexandre José Malheiro Bernardino

professor auxiliar do Instituto Superior Técnico da Universidade Técnica de Lisboa

Doutor António José Ribeiro Neves

professor auxiliar convidado da Universidade de Aveiro

agradecimentos À minha faḿılia, pai e mãe, que sempre me apoiou. Ao meu maninho

engenheiro que me ajudou a matar o tempo jogando PES. Aos meus amigos,

David, Nelson, Tozé e Sr. Nuno pelo incentivo e por acreditarem no meu

trabalho. Ao meu orientador e co-orientador pela enorme e incansável ajuda

na escrita desta bela obra. Agradeço também aos elementos da equipa

CAMBADA, em especial ao grupo da visão.

Por fim, a quem a minha memória possa ter falhado. . .

palavras-chave Visão robótica, câmaras omnidireccionais, transformada de Hough, detecção

de contornos, detecção de objectos, análise de imagem, processamento em

tempo-real.

resumo A procura e reconhecimento de padrões foi sempre um desafio para a mente

humana e sem dúvida a sua maior capacidade. Esta tese encontra-se inse-

rida no doḿınio do RoboCup e apresenta uma solução em tempo-real para a

detecção de objectos através do processamento de imagem. Ao longo do tra-

balho, desenvolvemos vários algoritmos para análise de imagem com vista a

encontrar objectos através da sua cor e das suas propriedades morfológicas.

Nos algoritmos baseados na procura por cor, foram usados métodos de

segmentação de cor e procura radial na imagem, permitindo bom desem-

penho em tempo-real. A pesquisa por propriedades morfológicas baseia-se

em algoritmos de detecção de contornos em conjunto com a transformada

circular de Hough. Ambos algoritmos, procura por cor e por caracteŕısticas

morfológicas, provaram a sua fiabilidade, sendo capazes de boas taxas de

detecção em condições de tempo-real. Para além do anteriormente refe-

rido, foi desenvolvida uma biblioteca para manipular imagens e assegurar

uma abstracção sobre os posśıveis modos da imagem e uma ferramenta para

ajudar na calibração da visão perspectiva.

keywords Robotic vision, omnidirectional cameras, Hough transform, edge detection,

object detection, image analysis, real-time processing.

abstract The search and recognition of patterns has always been a challenge for the

human mind, and without any doubts its biggest capacity. This thesis is

inserted in the RoboCup domain and presents a real-time solution to object

detection using image analysis. In this work, we developed several image

analysis algorithms to find objects based in their color and morphological

properties. The color based search algorithms use color segmentation meth-

ods along with radial image scanning, allowing real-time performances. The

morphological analysis is based in edge detection algorithms and the circu-

lar Hough transform. Both algorithms, search for color and morphological

properties, proved their reliability, being capable of good detection ratios in

real-time situations. Moreover, this thesis presents several tools, namely, an

image library created to better manipulate the images and assure abstrac-

tion over the possible image modes acquired by digital cameras, and a tool

to help in the perspective vision calibration.

Contents

1 Introduction 1

1.1 The CAMBADA team . 1

1.2 Other teams in RoboCup middle size league 3

1.3 Objectives achieved . 3

2 Hybrid vision system 5

2.1 Hardware architecture . 5

2.2 Software architecture . 6

2.3 Calibration of the vision system . 7

2.3.1 Calibration of the camera parameters 8

2.3.2 Color calibration . 8

2.3.3 Distance mapping calibration . 8

2.4 Color processing sub-system . 9

2.4.1 Color classification . 9

2.4.2 Color extraction . 10

2.4.3 Object detection . 13

3 Color ball detection improvements 15

3.1 Shadowed ball recover algorithm . 15

3.2 DistanceVsPixel validation algorithm . 16

3.3 Results . 18

i

4 Morphological ball detection 23

4.1 Overview . 23

4.2 Edge detection . 24

4.2.1 Sobel operator . 25

4.2.2 Laplace operator . 25

4.2.3 Canny operator . 26

4.2.4 Choosing an edge detector . 27

4.3 Hough transform . 30

4.3.1 Implementation . 30

4.4 Results . 31

5 Developed Tools 35

5.1 The PerspectiveMapCalib . 35

5.1.1 Results . 40

5.2 ImageHolder class . 40

6 Conclusions and future work 45

6.1 Future work . 45

A ImageHolder 47

A.1 Detailed Description . 51

A.2 Constructor & Destructor Documentation . 51

A.3 Member Function Documentation . 52

ii

Chapter 1

Introduction

The search and recognition of patterns has always been a challenge for the human mind,

and without any doubts its biggest capacity. Given this potential, we look for synthesize

this capacity in a real-time processing unit, in order to accelerate and improve the control of

various processes.

In the last years, robotic vision has been under heavy studies in order to face new obstacles

introduced by the RoboCup championship. In RoboCup, autonomous robotic agents have to

play football according to FIFA rules with some modifications (see http://www.robocup.org).

In order to control an autonomous robotic agent, surrounding environment information has

to be perceived so the agent can react accordingly, which leads to the use of robotic vision

systems.

Being a strongly color based environment, the vision system is the main sensorial source

in RoboCup. Trying to mimic the human vision, solutions for image analysis in real-time have

been created and explored by many teams around the world. More than “By the year 2050,

develop a team of fully autonomous humanoid robots that can win against the human world

soccer champion team.”, the RoboCup is a development platform, orientating and boosting

the research in the robotic field.

1.1 The CAMBADA team

CAMBADA (acronym of Cooperative Autonomous Mobile roBots with Advanced Dis-

tributed Architecture) is the RoboCup middle size league soccer team of the University of

Aveiro, Portugal. This project started officially in October 2003 and, since then, the team has

participated in several RoboCup competitions and Portuguese Robotics Festivals, achieving

1

http://www.robocup.org

the following results:

• Portuguese Robotics Open 2004: 5th place;

• Portuguese Robotics Open 2005: 4th place;

• Portuguese Robotics Open 2006: 3rd place;

• Portuguese Robotics Open 2007: 1st place;

• RoboCup’2007: 5th place;

• Portuguese Robotics Open 2008: 1st place.

The team also participated in the following events:

• RoboCup’2004;

• RoboCup’2006;

• DutchOpen’2006;

The CAMBADA robots were designed and completely built in-house. Each robot is built

upon a circular aluminum chassis (with roughly 485 mm diameter), which supports three

independent motors (allowing for omnidirectional motion), an electromagnetic kicking device

and three NiMH batteries. The remaining parts of the robot are placed in three higher layers,

namely:

• The first layer upon the chassis is used to place all the electronic modules such as motor

controllers and battery status sensors;

• The second layer contains the main processing unit, currently a 12” notebook based on

an Intel Core2Duo 2.0 GHz processor with 1024 MB of memory RAM;

• Finally, on the top of the robots stands a hybrid vision system consisting of an omnidi-

rectional sub-system plus a perspective sub-system. Both sub-systems have a standard

firewire camera, while the omnidirectional sub-system has also an hyperbolic mirror.

2

1.2 Other teams in RoboCup middle size league

Being the RoboCup World Championship a world wide competition, many teams compete

in the Middle Size Soccer League. This allows the emergence of diverse solutions for the

various problems inserted in this context.

Many teams are currently taking their first steps in 3D ball information retrieving [1, 2]

while others are developing vision systems capable of detecting balls without a specific color

[3, 4]. There are also some teams moving their vision systems algorithms to VHDL based

algorithms taking advantage of the FPGA’s versatility [1, 5]. Even so, for now, the great

majority of the teams base their image analysis in color search using radial sensors [6, 7, 3, 8, 9].

1.3 Objectives achieved

Based in the CAMBADA vision system, this work covers two main areas: color image anal-

ysis and morphological image analysis. In the color analysis field, various improvements were

performed in the ball detection system, with the introduction of color finding and validation

algorithms. In morphological analysis, being an unexplored field in the CAMBADA vision

system, we developed an early version of what will be the morphological image processing

system.

This work shows a great improvement in the CAMBADA vision system, both in accuracy

and in reliability. Furthermore, the improvements brought more color independence to the

system, allowing the robot agents to play with balls of any color.

With a robust spatial ball localization system as objective, two stages were defined. In the

first stage, the actual system, that is strongly based in color analysis, would be improved by in-

cluding a ball validation system. In the second stage, a morphological based search algorithm

would be developed to provide ball localization independently of the ball color. In parallel

with this development, an image library denoted ImageHolder would be created to better

manipulate the images and assure abstraction over the possible image modes. Furthermore,

it was developed a tool to help in the perspective system calibration.

3

4

Chapter 2

Hybrid vision system

In the RoboCup domain, vision systems are without any doubts, the most important

sensing system. Almost every team of the Middle Size League, if not every one, uses a camera

as its main sensor, deploying the information extraction tasks into the image processing field.

In this chapter, it is presented a detailed description of the CAMBADA vision system,

along with some techniques used to make it a real-time, robust and efficient system.

2.1 Hardware architecture

In the last few years, the vision system of the CAMBADA team has evolved into an hybrid

vision system, formed by an omnidirectional vision sub-system and a perspective vision sub-

system, that together can analyze the environment around the robots, both at close and long

distances (see Fig. 2.1).

The omnidirectional vision system [10] is based on a catadioptric configuration imple-

mented with a firewire camera (PointGrey Flea2 camera with a 1/3” CCD sensor and a

4.0mm focal distance lens) and an hyperbolic mirror. This camera can work at 30 fps using

the YUV 4:2:2 or RGB modes with a resolution of 640 × 480 pixels. The perspective vision

system uses a low cost firewire camera (BCL 1.2 Unibrain camera with a 1/4” CCD sensor

and a 3.6mm focal distance lens). This camera can deliver 30 frames per second (fps) using

the YUV 4:1:1 mode with a resolution of 640 × 480 pixels.

The information regarding close objects, like white lines of the field, other robots and the

ball, are acquired through the omnidirectional system, whereas the perspective system is used

to locate other robots and the ball at long distances, which are difficult to detect using the

omnidirectional vision system.

5

Figure 2.1: The hardware architecture of the vision system developed for the CAMBADA

robotic soccer team. On the top, the omnidirectional sub-system with a camera pointing to

an hyperbolic mirror. On the bottom of the image, the perspective sub-system with a camera

pointing towards the field.

Our system is prepared to acquire images in RGB 24-bit, YUV 4:2:2 or YUV 4:1:1 format.

However, we use the HSV color space for color calibration, due to its special characteristics

[11].

2.2 Software architecture

The software architecture is based on a distributed paradigm grouping main tasks in dif-

ferent modules. This permits a better understanding of the software work-flow and easier

implementation of future improvements. The software can be split in three main modules,

namely the Utility Sub-System, the Color Processing Sub-System and the Morphological Pro-

cessing Sub-System, as can be seen in Fig. 2.2. Each one of these sub-systems labels a domain

area where their processes fit, as the case of Acquire Image and Display Image in the Util-

ity Sub-System. As can be seen in Color Processing Sub-System, proper color classification

and extraction processes were developed, along with an object detection process to extract

information, through color analysis, from the acquired image. The Morphological Processing

Sub-System, explained in detail in Chapter 4, presents an early version of a color independent

ball detection algorithm, that is still under heavy study and development.

Despite the obvious differences between the omnidirectional and the perspective sub-

systems, the software architecture used in both is the same, changing only the Image Mask

& Radial Sensors and the Distance Mapping Image.

6

Figure 2.2: The software architecture of the vision system developed for the CAMBADA

robotic soccer team.

The use of radial search lines, also called radial sensors, for object detection accelerates the

object detection algorithm without compromising its accuracy. The acceleration is achieved

through the reduction of the search area in the image, since the radial sensors cover only a

small percentage of the image [12]. This method can be compared to other techniques like

subsampling. Taking the study in [13, 14] where a “Fast and High Performance Image Sub-

sampling Using Feedforward Neural Networks” is explored, it is easy to see that subsampling

requires an extra step in processing while with radial search lines do not. Another disad-

vantage is the possible distortion of the subsampled image, and in this special case, the time

consumed during the neural network learning phase. Moreover, the polar coordinates used

in radial search line analysis simplifies the description of the objects, by using distance and

angle measures instead of their bounding box.

2.3 Calibration of the vision system

Calibrating a robotic vision system tends to be a slow process. Many factors have to be

taken into account to provide a good calibration, e.g. the light conditions and the physical

structure of the vision system. If the robotic vision system has to be used under natural light,

for example near a window or outside, the light conditions can change very quickly making it

even harder to calibrate. Additionally, when a robotic system uses vision as its main sensorial

element (as in the CAMBADA team robots), it becomes crucial to have a good calibration

of the vision system, under the severe risk of having a nonfunctional robotic system.

In the CAMBADA vision system, the calibration consists in three distinct points, namely

7

the calibration of the camera parameters, the calibration of colors and distance mapping

calibration. These three steps must be replicated for both cameras, omnidirectional and

perspective, and for all robots.

2.3.1 Calibration of the camera parameters

To obtain a good color image, some parameters in the camera must be calibrated, namely

exposure, white-balance, gain and brightness. These parameters are calibrated with an auto-

matic tool called AutoCalib, described in [15, 16]. Once this calibration is done, the resulting

image color is balanced. This allows to use the same color calibration configuration (referred

next) in every robot as described in [16].

2.3.2 Color calibration

In order to use color analysis over the received images, a color calibration must be per-

formed for defining the color range, usually as a volume in a certain color space, associated

to each color class. This calibration is performed in HSV (Hue, Saturation and Value) color

space, suitable for color segmentation [11, 17, 18]. Again, this calibration can be done with

the tool AutoCalib, previously mentioned.

2.3.3 Distance mapping calibration

This important process is responsible to create the distance map image that will be used

to convert image coordinates (pixels) into real coordinates (meters) relative to the robot.

Mapping the objects found in the image into the real world coordinates is a crucial task for

modeling the environment around the robot, allowing the robotic agent to know its localization

(using a localization algorithm based in the white lines) and the surrounding objects position.

To implement this operation, it is created an array, called distance map image (see Fig. 2.3),

with dimension “image width” × “image height” where each entry is a real world coordinate

represented by x and y axis in meters. In this case, it is used an array of 307 200 (640× 480)

entries. Using the image coordinates (row and column) as an index to the array, the real

world coordinate (x, y) is returned. For the omnidirectional sub-system, the distance map is

obtained with the algorithm and tools described in [19]. To the perspective sub-system, the

distance map is created using a tool named PerspectiveMapCalib developed by the author

and explained in Section 5.1.

8

Figure 2.3: Example of a distance map image. On the left an image with referential (n,m)

in pixels. On the right, an image with referential (y, x) in meters.

2.4 Color processing sub-system

In RoboCup environments, image analysis can be simplified due to the color codes of the

objects. Black robots play with an orange ball on a green field that has white lines, making

the analysis of the color of each pixel in the image an important feature for object detection.

2.4.1 Color classification

To take advantage of the color code used, the acquired image is processed using a look-up

table (LUT) for fast color classification [12, 16]. The LUT accelerates the color classification

by expanding the image color components into a big table. The table has 16 777 216 entries

(224, 8 bits for red, 8 bits for green and 8 bits for blue in the case of RGB images), each 8

bits wide, occupying 16 MBytes in total. If another color space is used, the table size remains

the same, changing only the meaning of each component. Each entry has 8 bits, each one

expressing the presence or absence of a predefined class (associated to a color range). This

allows the same color to be classified into several classes at the same time, being possible to

classify up to 8 different classes. To classify a pixel, its color is used as an index to the table,

and the value (8 bits) read from the table is the pixel classification, also named as “pixel color

mask”.

9

2.4.2 Color extraction

Before the system proceeds to process the received image, some operations are performed

to simplify the image analysis. Some regions in the image can be discarded without loosing

any information. Taking the omnidirectional sub-system as example, the robot itself appears

reflected in the mirror, as well as the sticks that hold the mirror. These regions, along with

image areas outside the mirror, don’t include any useful information and therefore must be

discarded to avoid erroneous information. The same problem appears in the perspective sub-

system, where objects above the horizon line must be discarded, or else they would appear

projected at infinite distance in the ground plane. In the perspective sub-system, very close

objects are discarded as they are analyzed by the omnidirectional sub-system.

To discard these regions, it is used an image with the configuration of the pixels to be

discarded as presented in Fig. 2.4. In the figure, white pixels represent the valid area in the

image and black pixels the area to be discarded. Besides simplifying, this step potentially

accelerates the object detection processing and the detection of false objects is avoided.

(a) (b)

Figure 2.4: Example of images containing the valid pixels to be processed. In (a), from the

perspective sub-system and in (b), from the omnidirectional sub-system. Black pixels mark

the pixels that are discarded.

Proceeding to the extraction of the color information from the image, it is performed

through radial search lines instead of a full image analysis. The use of radial search lines

(also called radial sensors) has proved to be very effective and has a processing time almost

constant, a desired property in real-time systems [12]. This technique reduces the number

of pixels to be processed and, instead of the full image, only pixels covered by radial sensors

are processed. Using radial sensors, the valid area of the image is reduced to near 21.9% for

10

the omnidirectional and 17.0% for the perspective system, when compared with the input

image of 640 × 480 pixels. This results in a huge performance improvement, allowing this

system to work in real-time applications without compromising its efficiency. To create these

search lines it is used the Bresenham algorithm [20]. The search lines are created starting

in the position of the robot center in the image, towards the image limits, disposed in radial

orientation as presented in Fig. 2.5.

(a) (b)

Figure 2.5: The representation of the radial sensors used for color extraction. In (a) from

the perspective sub-system and in (b) from the omnidirectional sub-system. The radial lines

mark the pixels that will be processed.

The search is then conducted, one sensor at a time, from the center of the robot to

the peripheral area through the pixels covered by these radial lines. This search looks for

areas with specific colors and transitions between two colors along the sensor. As this step

can become complex, three distinct algorithms were developed to use in different occasions.

Follows a description of each algorithm and when they are applied.

To detect areas with a specific color, we developed an algorithm with a good image noise

removal based on a median filter. Each time a pixel with a color of interest is found, a

predefined number of the following pixels is analyzed. If a number of pixels with the same

color of interest is found then the current sensor is marked as having this color, otherwise the

pixel is discarded and the search continues.

An extension to the previous algorithm is applied when searching for the orange color,

improving the ball detection. This algorithm was developed by the author, and is further

explained in Section 3.1.

In order to detect color transitions, was developed an algorithm with median filter, illus-

trated in Fig. 2.6. This algorithm is used to find the field white lines, avoiding the image noise.

11

The white lines are detected as a transition between green and non-green with a minimum

number of white pixels. When the search reaches a non-green pixel, a predefined number of

the following pixels (Wc) is searched and the number of non-green pixels and white pixels

is calculated. Then, another search is performed in a small window after the pixel currently

being tested (Wa), and before (Wb), calculating the number of green pixels. Finally, these

calculated values are compared with predefined thresholds and accepted, or not, as color

transitions.

Figure 2.6: An example of a transition between green and white. “G” means green pixel,

“W” means white pixel and “X” means pixel with a color different from green or white.

This first analysis extracts basic information such as the first pixel where the color was

found and the number of pixels with that color that have been found in the same search line.

To speed up the following process, this information is grouped into a list of colors.

The previous information is processed and grouped according to spatial proximity and size,

creating what it is called of blob descriptors. The blob descriptors are themselves grouped by

color and they contain the following statistical and spatial information essential to the object

detection process:

• Average distance to the robot;

• Mass center;

• Angular width;

• Number of pixels (of the color to which this blob belongs);

• Number of green pixels between blob and the robot;

• Number of green pixels after blob.

The fields of blob descriptors were chosen based in the image analysis using polar coordi-

nates. The use of polar coordinates in analysis is an advantage due the fact that it is being

used over an omnidirectional image, simplifying the objects descriptor into distance and angle

measures instead of their bounding box. The perspective image also has this advantage due

to the position of the radial sensors.

12

2.4.3 Object detection

This processing step receives blob descriptors and processes their information in order to

detect objects of interest, which can be white lines, black robots or an orange ball. When the

objects are found, their position in the image (pixel coordinates) is converted into the real

position (meters) relative to the robot using the Distance Mapping Image, and is sent to the

upper layers of processing through the real-time database (RTDB) [21]. The three kinds of

objects have different properties, and there are different algorithms to detect them. Follows

a description of each algorithm.

White lines detection

Because detection of white lines is somehow trivial, at this point the white lines were

already found as transitions between green and white in the Color extraction process and

require only a small processing. In this process, the white lines are only converted to real

coordinates and sent to the real-time database.

Obstacles detection

The obstacles position is calculated by applying the following algorithm to the black blob

descriptors:

1. If the angular width of one blob is greater than 10 degrees, split the blob into smaller

blobs, in order to obtain an accurate information about obstacles.

2. Calculate the information for each blob.

3. The position of the obstacle is given by the distance of the blob relatively to the robot.

The limits of the obstacle are obtained using the angular width of the blob.

Ball detection

The ball position is calculated by applying the following algorithm to the orange blob

descriptors:

1. Perform a first validation of the orange blobs using the information about the green

pixels after and before the blob.

13

2. Validate the remaining orange blobs with the ball validation system described in Sec-

tion 3.2.

3. Using the distance from the ball candidates to the robot, choose the best candidate

blob. The position of the ball is the mass center of the blob.

This brief description is extensively explained in Chapter 3, entirely dedicated to color

based ball detection. In Chapter 4, a morphological based ball detection system is described

and explained.

14

Chapter 3

Color ball detection improvements

Being the ball detection a key issue, its correct detection is of most importance, and must

be as accurate and efficient as possible. Taking into account the color processing sub-system

(see Fig. 2.2), a deep analysis of the color ball detection algorithm showed that it could be

described by the following logical operations:

1. Search for orange areas along the sensors;

2. Create the orange blob descriptors;

3. Validate the orange blob descriptors.

An improvement in any of this operations would also improve the final result of the color

ball detection algorithm. To push the ball detection robustness a little further, we developed

and implemented two new algorithms. The first, Shadowed ball recover, is explained next, and

fits inside the first logical operation described before. The second, DistanceVsPixel validation,

is held inside the third logical operation and is explained ahead in this chapter.

3.1 Shadowed ball recover algorithm

During early developments in the DistanceVsPixel validation algorithm described in Sec-

tion 3.2 of this chapter, it was realized that the ball size in pixels can be strongly affected

by the shadow of the ball casted over itself. The shadow effect makes the bottom side of the

ball darker and therefore harder to be included in color segmentation without including other

dark orange objects that could be present in the surrounding environment. Also, because the

15

color segmentation is based in color space volumes, minor changes in illumination could lead

to a deficient color segmentation of the ball and eventually failing to detect the ball.

To reduce these effects in ball detection, it was developed an algorithm to recover darker

orange pixels, previously discarded during the segmentation process due to ball shadow cast

over itself. Next, the algorithm is presented.

After the first search for orange areas along the radial sensors, a second search is conducted

along the sensors where orange was found. This second search starts in the first orange pixel

found in the sensor in direction to the center of the robot. During the search, each pixel of the

sensor is again compared with modified values of the orange color volume, previously defined

during color calibration (described in Section 2.3.2). This modified orange color volume allows

to retrieve darker orange pixels previously discarded, being its principal modification the much

lower bottom limit in Value component (of HSV color space). To prevent finding false dark

orange pixels (not belonging to the ball), the search in the sensors is limited in three ways.

The search stops in one sensor and jumps to the next sensor when:

• Is found a predefined number of darker orange pixels;

• The search is done along a predefined number of pixels;

• Is found a pixel with a different valid color (green for example).

In Fig. 3.1 it is possible to see the effect of the algorithm applied to the omnidirectional sub-

system. Results in the perspective sub-system are similar, using exactly the same algorithm.

As we can see, the detected ball (orange blob with cyan cross over it) in the objects image

(right side of Fig. 3.1), has an improved shape due to the shadowed ball recovery algorithm.

3.2 DistanceVsPixel validation algorithm

In a validation system, two types of errors must be avoided: false negatives and false

positives. This study focus its attention in the reduction of the second type of errors (false

positives) relative to ball detection, thus making valid all the existing information. This

is a primary objective in order to obtain reliable ball information, essential to the good

performance of the robotic agents.

By observation, it was noticed that a large number of false positives was due to the light

distortion created by the color transitions, for example near the white lines in the field. Color

transitions between white and green creates light distortion sometimes visible on the captured

16

Figure 3.1: On the upper part of the figure: on the left a real image without the shadowed

ball recovery algorithm, and on the right the detected objects. On the bottom part of the

figure: on the left a real image with the shadowed ball recovery algorithm (recovered pixels

represented with red color in real image), and on the right the detected objects.

image. This fact introduces lots of false positives all over the field, creating potential confusion

in the higher layers of software.

To eliminate this false positives, it was suggested the use of a thresholding function, later

called DistanceVsPixel validation algorithm. This thresholding function would be an unidi-

mensional function, with the distance between the robot and the object as the independent

variable. The use of an unidimensional function, allows an easy implementation, and less

computational effort during the validation process, once it is implemented. To select the best

discriminant variable, the vision system was presented with three different scenarios, all of

them under the same light conditions. As the search for the discriminant variable was re-

sumed to the information presented in the blob descriptors, during this three tests only two

variables were logged, being them:

• Area of the object (in pixels);

• Angular width of the object (in degrees).

17

Note that only after succeeding in the validation test, the found orange blob can be called

a ball, instead of object.

These three tests were based in one orange object standing still in the field, and the robot

moving along a path in the field. In the first test the orange object was a square paper of

0.28× 0.28 meters, in the second test a size 5 ball, and in the third test no objects at all were

left on the field. In the three tests, the robot moved through the same path in the field.

Attending to the results of the tests, shown in Fig. 3.2, the discriminant variable was easily

chosen as being the area of the object. Also, note that this results show the behavior of the

omnidirectional sub-system. Similar results were obtained with the perspective sub-system,

where datum follow the same patterns.

Being approximately piecewise linear, the function relating the distance between robot

and object and the area of object, can be implemented through two simple linear functions.

The use of linear functions makes either the implementation, as well as a possible posterior

adjustment of the system, much easier. Using the selected variables, a validation system

based on two thresholding linear functions (y = mx + b) were implemented to eliminate

false ball positives. In Fig. 3.3, the thresholding functions for the two vision sub-systems

are represented along with some ball samples. Samples below the thresholding functions are

discarded, cataloging the samples above the threshold as valid balls.

This method, besides simple, is robust, fast and easy to implement. Furthermore, its

parameters, m and b, are simple to understand, allowing fast and easy adjustments.

3.3 Results

To assure good results in RoboCup competitions, the system was tested with the optimiza-

tions described above. Testing systems in working conditions generates much more realistic

results. For that purpose, the robot was moved along a predefined path through the robotic

football field, leaving the ball in a known location. The ball position given by the robot is

then compared with the real position of the ball. The results in this test may be affected

by the localization algorithm errors and the robot bumps while moving, being these external

errors outside the scope of this study.

The robot path in the field may be seen in Fig. 3.4, along with the measured ball position.

In Table 3.1 it is presented an analysis of the acquired data during the test. In Fig. 3.4, it

is possible to notice that the average of the measured positions of the ball is almost centered

in the real ball position. In Table 3.1 the results for the MidField case show the effectiveness

18

0

200

400

600

800

1000

1200

80 100 120 140 160 180 200 220

ar
ea

 (
pi

xe
ls

)

distance (pixels)

Analysis of the objects area

square
ball

empty field

(a)

5

10

15

20

25

30

80 100 120 140 160 180 200 220

an
gu

la
r

w
id

th
 (

de
gr

ee
s)

distance (pixels)

Analysis of the objects angular width

square
ball

empty field

(b)

Figure 3.2: In (a), the comparison between the three tests using the area in pixels. In (b),

another comparison using the objects angular width in degrees. Note that in both figures the

distance is in meters.

19

of this system, with a very high detection ratio (near 100%), and a great accuracy, with the

average measures very near the real ball position. As this test samples are only from the

omnidirectional sub-system, the results shown in the Penalty case are not so good, due to the

distortion of the acquired image at long distances introduced by the physical structure itself.

Even so, in about 76.8% of the samples, the ball was detected with a standard deviation

below 0.30 meters. Notice the average processing time of 12 milliseconds (ms), below the

upper limit of 33 ms necessary for a real-time system running at 30 Hz.

Experiment Real Measures

Position Average Std Detection ratio Processing time

MidField (0.00, 0.00) (-0.10, -0.06) (0.19, 0.11) 99.3% 12 ms

Penalty (-2.39, 0.0) (-2.56, 0.11) (0.26, 0.22) 76.8% 12 ms

Table 3.1: Some measures obtained for the experiments presented in Fig. 3.4. All the measures

are in meters, except for Detection ratio that shows the percentage of samples collected where

the ball was detected and Processing time presented in milliseconds.

20

0

50

100

150

200

250

300

350

400

450

80 100 120 140 160 180 200 220

ar
ea

 (
pi

xe
ls

)

distance (pixels)

Omnidirectional sub-system ball validation

W/O shadow recover
W shadow recover

limit used for ball validation

(a)

100

200

300

400

500

600

700

300 320 340 360 380 400

ar
ea

 (
pi

xe
ls

)

distance (pixels)

Perspective sub-system ball validation

W/O shadow recover
W shadow recover

limit used for ball validation

(b)

Figure 3.3: The ball validation thresholding function for the omnidirectional in (a), and the

perspective sub-system in (b). The behavior of the acquired data, for the omnidirectional

sub-system, around distance 120, is due to some occlusion of the ball by the mirror holding

structure. This behavior is taken into account in order to improve the algorithm.

21

-3

-2

-1

0

1

2

3

-4 -2 0 2 4

fie
dl

 w
id

th
 (

m
et

er
s)

fiedl height (meters)

Ball in mid-field

measured ball position
real ball position

robot path
field

(a)

-3

-2

-1

0

1

2

3

-4 -2 0 2 4

fie
dl

 w
id

th
 (

m
et

er
s)

fiedl height (meters)

Ball in penalty mark

measured ball position
real ball position

robot path
field

(b)

Figure 3.4: Experimental results obtained by the proposed omnidirectional vision system. In

(a) the ball was positioned in the center of the field. In (b) the ball was positioned in the

penalty mark. The robot has performed a defined trajectory and the position of the ball was

registered. Both axis in the graphics are in meters.

22

Chapter 4

Morphological ball detection

Extracting information from images can be done in various ways. In the previous chapters,

it was shown many kinds of information extraction algorithms based on color analysis. These

algorithms work well in environments where the color codes are used to distinguish objects,

but when objects don’t have a predefined color, the algorithms fail.

On the RoboCup Middle Size League, the color codes tend to disappear as the competition

evolves. Being the color of the ball the next color scheduled to disappear, a solution was

developed by the author to detect balls independently of their color. This solution is based

in a morphological analysis of the image, being strictly directed to detect round objects in

the field, in this case the ball. This chapter describes the study and implementation of the

algorithm made by the author.

4.1 Overview

Morphological object recognition through image analysis has became more robust and

accurate in the past years, whereas still very time consuming even to modern personal com-

puters [22, 23, 24]. Being the RoboCup a real-time environment, available processing time

can become a big constrain when analyzing large amounts of data or executing complex al-

gorithms. Many algorithms found during a previous research showed their effectiveness but,

unfortunately, their processing time is in some cases over 1 second [22].

The Morphological Processing Sub-System (see Fig. 2.2) was developed to overcome this

obstacle using a two pass analysis to detect the ball. First, the image is searched for points of

interest (potential locations) where balls can be found. Then a validation system is applied

to the spots previously found to discard false ball locations. A similar approach was found in

23

[22].

The search for potential spots is conducted taking advantage of morphological characteris-

tics of the ball (round shape) using a feature extraction technique known as Hough transform.

First used to identify lines in images, the Hough transform has been generalized, through the

years, to identify positions of arbitrary shapes, most commonly circles or ellipses, in im-

ages. The author’s interest and implementation of this technique in Morphological Processing

Sub-System is explained in Section 4.3.

To feed the Hough transform process, it is necessary a binary image (image where the

pixels can only have two values) with the edge information of the objects. This image, Edges

Image, is obtained using an image operator commonly called edge detector. In Section 4.2 it

is presented an explanation about this process and its implementation.

The validation system for the morphological ball detector is still not implemented. This

issue is referred in Section 6.1, where some proposals are made regarding this problem.

4.2 Edge detection

Being this the first image processing step in the morphological detection, it must be as

efficient and accurate as possible in order to not compromise the following processes. Besides

being fast to calculate, the pretended resulting image must be absent of noise as much as

possible, with well defined boundaries and be motion blur tolerant. Be tolerant to motion blur

means that even when the objects present blur deformation in the image, the edge detector

can retrieve its contours. In Fig. 4.1 its shown an example of motion blur deformation.

Before making the choice, some image edge detectors were compared. The comparison

was made between the three main image operators used to find edges, Sobel, Laplace and

Canny as these are, by far, the most well known and efficient image operators used in edge

detection. The tests occurred under two distinct situations: with the ball standing still and

ball moving fast through the field. The test with the ball moving fast was realized to study

the motion blur effect in the edge detectors on high speed objects captured with relatively

low frame rates (30 fps). In each test, two balls of different colors were used. Figure 4.2 shows

an image of each studied scenario.

The three operators are based on convolving the image with a small, separable, and integer

valued filter in horizontal and vertical direction and are therefore relatively inexpensive in

terms of computations. In both tests, all the operators used a convolving window of size 3.

24

Figure 4.1: Example of motion blur effect. The orange object in the image is in fact an orange

ball being pushed at high speed, creating the fade effect called motion blur.

4.2.1 Sobel operator

The Sobel operator is widely used in edge detection algorithms [25, 26, 27, 28]. It is a

discrete differentiation operator, that computes an approximation of the gradient of the image

intensity function. This approximation is relatively crude, in particular for high frequency

variations in the image.

By calculating the gradient of the image intensity at each point, the operator gives the

direction of the largest possible increase from light to dark and the rate of change in that

direction. This shows how “abruptly” or “smoothly” the image changes at that point, and

therefore how likely that part of the image represents an edge, as well as how that edge is

likely to be oriented.

In Fig. 4.3, the resulting images of the Sobel edge detector applied to the images in Fig. 4.2.

4.2.2 Laplace operator

The Laplace operator, as the Sobel, is commonly used in image processing as an edge de-

tection algorithm [28, 29]. Also called Laplacian, it is denoted by ∆ or ∇2 and is a differential

operator.

In Fig. 4.4, the resulting images of the Laplace edge detector applied to the images in

Fig. 4.2.

25

(a) (b)

Figure 4.2: Two examples of typical images captured in the RoboCup environment. In (a)

a test image with the ball standing still and in (b) with the ball moving at high speed. The

upper images refer to the white ball, and the bottom images to the orange ball.

4.2.3 Canny operator

The Canny edge detection operator uses a multi-stage algorithm to detect a wide range

of edges in images. The Canny operator was developed to be an optimal edge detection

algorithm [30, 31, 32, 33], presenting the following features as the optimal ones:

• Good detection - the algorithm should mark as many real edges in the image as possible;

• Good localization - edges marked should be as close as possible to the edge in the real

image;

• Minimal response - a given edge in the image should only be marked once, and where

possible, image noise should not create false edges.

26

(a) (b)

Figure 4.3: Two examples previously presented in Fig. 4.2, now with the Sobel operator

applied. In (a) a test image with the ball standing still and in (b) with the ball moving at

high speed. The upper images refer to the white ball, and the bottom images to the orange

ball.

In the Canny operator, these requirements are obtained using calculus variations, a tech-

nique used to find a function which optimizes a functional. The optimal function in Canny

detector is described by the sum of four exponential terms, but can be approximated by the

first derivative of a Gaussian. Using a Canny filter it is possible to obtain an image of edges

with edges with size of 1 pixel, due to its non-maximal suppression properties.

In Fig. 4.5 the resulting images of the Canny edge detector applied to the images in Fig. 4.2

are presented.

4.2.4 Choosing an edge detector

To chose the best edge detector, the results from the tests will be compared taking in

account the image of edges and processing time needed by each edge detector. In one hand,

27

(a) (b)

Figure 4.4: Two examples previously presented in Fig. 4.2, now with the Laplace operator

applied. In (a) a test image with the ball standing still and in (b) with the ball moving at

high speed. The upper images refer to the white ball, and the bottom images to the orange

ball.

the real-time capability must be assured with low processing times. In other hand, the

algorithm must be able to detect the edges of the ball independently of its luminance contrast

with the ground, or its motion blur effect due to the speed. In this test, the use of two balls,

white and orange, allowed to get a first approach to the edge detector sensitivity to luminance

variations.

Note that in Figs. 4.3, 4.4 and 4.5, the edges are represented by the black pixels. In

Fig. 4.3 it is possible to see the bad results provided by the Sobel edge detector. The edges

are hard to see and the ball is almost invisible. In Fig. 4.4, the results improved a little. With

this edge detector, the white ball can be distinguished when standing still, or at low velocities,

but when using an orange ball or the ball is moving a little faster, this edge detector delivers

bad results. In Fig. 4.5, the ball can be seen perfectly when standing still, independently

of its color. When moving, the ball can also be pointed out, but not as clearly as when it

28

(a) (b)

Figure 4.5: Two examples previously presented in Fig. 4.2, now with the Canny operator

applied. In (a) a test image with the ball standing still and in (b) with the ball moving at

high speed. The upper images refer to the white ball, and the bottom images to the orange

ball.

is standing still. Comparing Fig. 4.3 with Fig. 4.4 and Fig. 4.5, it is notorious the superior

results provided by the Canny edge detector.

During these tests, the processing time of each algorithm was measured, being their mean

time presented in Table 4.1. A first look at the mean time spent for each edge detector (see

Table 4.1) may point out the Canny as the worst choice. In fact, the Canny processing time

is the highest between the ones tested but, even so, it is fast enough to be used in real-time

applications, and the resulting edge images show the effectiveness of this edge detector, way

above the others.

Since the Canny filter was developed to be an “optimal edge detector”, it was expected

from the beginning its supremacy in the results, being finally confirmed.

29

Edge detector Sobel Laplace Canny

Average processing time 5.17 4.11 10.59

Table 4.1: Processing time obtained from the three tested edge detection algorithms. All

times are in milliseconds.

4.3 Hough transform

The Hough transform is a technique widely used to find instances of objects, of a certain

class of shapes (lines, circles or even ellipses) by a voting procedure [34, 35, 36, 29]. Note

that finding the object is different from validating the object and with this method the image

is only searched for points of interest. This voting procedure is carried out in a parameter

space, from which object candidates are obtained as local maxima in a so-called Intensity Map

Image (see Fig. 2.2) that is explicitly constructed by the algorithm for computing the Hough

transform. Follows a detailed description of the algorithm implementation and optimization

for real-time purposes, and the results.

4.3.1 Implementation

In Fig. 4.6, it is shown an example of the algorithm used, where the dark continuous

lines represent the edges found in the Edges Image and the dashed lines are the result from

the Hough transform over discrete spots of the continuous lines. Due to the Hough circular

transform especial features, a big round object in the Edges Image would produce in the

Intensity Map Image a very intense peak in the center of the object, as shown on the left

side of Fig. 4.6. For contrast, a non-round object would produce areas of low intensity in the

Intensity Map Image, as represented in the right side of Fig. 4.6.

This approach rises the following problem: as the ball moves away, its edge circle size

scales down in the image. To solve this problem, information about the distance between the

robot center and the ball is used to adjust the Hough transform.

As this algorithm requires drawing circles (in the Intensity Map Image) centered in the

pixel actually being processed, it was developed a tool to accelerate this operation. Based in

predefined circle sizes and in the image dimensions, an array of offsets is created in memory for

each circle size. When added with the index of the pixel where the circle has to be centered,

this array of offsets will directly map the circle in the pixels of the image, reducing drastically

the processing time commonly needed for circle creation.

To improve the robustness of this algorithm a little further, some extra details are taken

30

Figure 4.6: Hough transform example. On the left, edges from the ball. On the right, edges

from the field white lines.

into account. To attain a clean image, the edges created by the robot reflection in the mirror

are removed using information from the Mask Image. Furthermore, although the FIFA rules

do not have restrictions for the ball color (see http://www.fifa.com), it is considered that

the ball is never green. This last assumption reduces the potential risk of false positives in

the middle of the field due to other robots over white lines, and crossing white lines. To do

so, information from the Labels Image is compared against the current pixel being processed.

And finally, because distant balls are very irregular in the Edges Image, due to its reduced

size, distant edges are discarded in the Hough transform to avoid erroneous false points of

interest.

In Figs. 4.7, 4.8 and 4.9, we can see an example of the Morphological Processing Sub-

System pipeline, presented in Fig. 2.2. As can be observed, the ball in the Edges Image

(Fig. 4.8), is not perfectly circular. Even so, as the Hough transform is very tolerant to gaps

in feature boundary descriptions and is relatively unaffected by image noise [30, 37, 38, 39],

it still performs well, as can be seen in Fig. 4.7. Notice as the center of the ball presents a

very high peak when compared to the rest of the image in Fig. 4.9

4.4 Results

Since this is a system in an early stage of development, the results shown in Fig. 4.10 and

in the Table 4.2 are very encouraging. In Table 4.2, it is not possible to include information

about the detection ratio of the ball, as this system still lacks validation, resulting in always

detecting a ball (even without any ball in the image). The average field in Table 4.2 shows the

31

http://www.fifa.com

Figure 4.7: Example of a captured image using the morphological ball detection system. The

cross over the ball points out the detected position.

good localization results and the standard deviation that, even presenting high values, must

be considered keeping in mind that this system does not include any validation, i.e., it always

points out the highest value in the Intensity Map Image. Notice the average processing time

of 25 ms, below the upper limit of 33 ms necessary for a real-time system running at 30 Hz.

Experiment Real Measures

Position Average Std Processing time

MidField (0.00, 0.00) (-0.27, 0.25) (1.33, 1.14) 25 ms

Table 4.2: Some measures obtained for the experiments presented in Fig. 4.10. All the

measures are in meters, except for Processing time presented in milliseconds.

32

Figure 4.8: Example previously presented in Fig. 4.7, now with the Canny edge detector

applied. Notice as the robot reflection was avoided from the Edges Image.

Figure 4.9: Example previously presented in Fig. 4.8, now with the Hough transform applied.

Notice that far edges are not processed and results over green pixels are not considered.

33

-3

-2

-1

0

1

2

3

-4 -2 0 2 4

fie
dl

 w
id

th
 (

m
et

er
s)

fiedl height (meters)

Ball in middle mark

measured ball position
measured robot path

real ball position
field

Figure 4.10: Experimental results obtained by the omnidirectional sub-system using the mor-

phological ball detection. In this experience the ball was positioned in the center of the field.

The robot has performed a predefined trajectory while the position of the ball was registered.

Both axis in the graphics are in meters.

34

Chapter 5

Developed Tools

5.1 The PerspectiveMapCalib

The use of a distance map image is a method commonly used in the RoboCup domain.

This method assumes that all the objects found in the image are in one plane (the ground

plane), allowing to map the distances in the image with only one camera. To simplify the

problem, it was assumed that the lens and the CCD from the camera were centered and

in parallel planes, so the center of the image would be the center of the CCD. Two more

approximations were made during this approach to the problem. First, the θ rotation was

ignored, so the camera is considered to be pointing towards the front of the robot and second,

the ϕ rotation of the camera was also ignored, considering it horizontally aligned (see Fig. 5.1).

Figure 5.1: Schematic representation of the perspective camera with its rotation axis.

To summarize, the mathematical model of this sub-system needs information about the

35

camera, the robot and the field. Some of this information, such as the hoffset and roffset

represented in Fig. 5.2, can be measured directly with good precision. Other kinds of in-

formation, like the pixel height, pixel width and the focal length represented in Fig. 5.4,

may be obtained from the camera data-sheet, given by the manufacturers. However, it is

still missing necessary information, namely the αoffset (see Fig. 5.2). This information can be

measured, but, in one hand, measures like the hoffset and roffset may be used from one robot

to another without compromising the resulting map image and, on the other hand, distance

map results are very sensible to αoffset variations and it is very time consuming to obtain good

measures of this variable. One way to overcome this time consuming process (of measuring

the αoffset in each robot) is to include an automatic measuring process of this parameter into

the PerspectiveMapCalib tool.

Figure 5.2: Robot and its perspective sub-system schematic side view.

In Fig. 5.2 and Fig. 5.3 it is presented a side and top schematic view of the perspective

vision sub-system. A schematic view of a detail over the perspective sub-system is presented

in Fig. 5.4. Follows a short explanation of the measures shown in these figures:

• hoffset - distance from the camera to the ground;

• roffset - radial distance from the camera to the robot center;

• αoffset - angular offset of the camera along α axis;

36

Figure 5.3: Schematic top-down view of the robot and perspective sub-system.

• yoffset - distance from the center of the robot to the point in the center of the image

projected on the ground;

• angαn - angle measured from the αoffset along α axis, relative to pixeln;

• angθm - angle measured from the robot front along θ axis, relative to pixelm;

• distanceyn - distance from the center of the robot to the pixeln, projected on the ground;

• distancexm - distance from the center of the robot to the pixeln, projected on the ground;

• focal length - distance between lens and CCD;

• pixeln - number of pixels (n) along a CCD column;

• pixelm - number of pixels (m) along a CCD row.

Using an image taken from a known position (over the goal line, aligned with the kick-off

mark, as shown in Fig. 5.5), the tool acquires some samples based on image analysis and some

user input data. The tool highlights the white lines found, asking the user for the distanceyn

between the robot center and the white line being processed. The search for white lines is

conducted over the central row of the image, because the θoffset is being ignored.

The following equation shows the relation between the yoffset and the angle αoffset, both

referred in Fig. 5.2,

αoffset = arctan

(

yoffset − roffset

hoffset

)

. (5.1)

37

Figure 5.4: Schematic view of a detail over the lens, CCD and focus point from the perspective

sub-system. On the left, a side view. On the right, a top-down view.

Figure 5.5: Example of an image processed by the tool PerspectiveMapCalib. Magenta spots

in the image show the white lines found. Orange circles highlight the spot being processed.

From (5.1), the relation is generalized to an angle angαn centered in αoffset,

angαn = αoffset − arctan

(

distanceyn − roffset

hoffset

)

. (5.2)

Attending to Fig. 5.4 (on the left), using simple trigonometric rules the following equation

can be obtained, relating a generic angle angn centered in αoffset and a pixel along a vertical

column in the CCD,

38

pixeln =
tan(angαn) × focal length

pixel height
. (5.3)

Substituting (5.2) in (5.3) results in,

pixeln = tan

[

αoffset − arctan

(

distanceyn − roffset

hoffset

)]

×
focal length

pixel height
. (5.4)

Manipulating (5.4), it is possible to isolate the αoffset in the first member, i.e.,

αoffset = arctan

(

pixeln × pixel height

focal length

)

+ arctan

(

distanceyn − roffset

hoffset

)

. (5.5)

With (5.5) and the samples (pairs of values pixeln and distanceyn introduced by the

user) previously acquired, the value αoffset can be found. To achieve a better result, the tool

PerspectiveMapCalib uses a mean filter with, at least, three calculated αoffset angles to obtain

the final result.

Using the previously discovered αoffset angle and with some manipulation of (5.4), the

distance corresponding to each pixel can be found using

distanceyn = roffset + hoffset × tan

[

αoffset − arctan

(

pixeln × pixel height

focal length

)]

. (5.6)

Through (5.6) it is possible to obtain the real distanceyn of a pixel projected in the ground

along the y axis.

Based on Fig. 5.3, the following equation can be deduced, creating a relation between a

generic angle angθm and a distancexm,

angθm = arctan

(

distancexm

distanceyn

)

. (5.7)

Now, relating angθm with pixelm along the x axis we obtain

pixelm =
tan(angθm) × focal length

pixel width
. (5.8)

Using (5.7) to substitute in (5.8) and manipulating it, results in a relation between a

pixelm and a distancexm, both along the x axis, i.e.,

distancexm = arctan

(

pixelm × pixel width

focal length

)

× distanceyn. (5.9)

39

Summarizing, making use of (5.5), and some user input, its possible to obtain the αoffset.

This permits the creation of the distance map image using (5.9) and (5.6) providing the x

and y coordinates associated to each pixel(n,m).

5.1.1 Results

To measure the reliability of this tool, tests were made analyzing the resulting distance

map image. To do so, the robot was moved along a predefined path through the game field

leaving the ball in a known location. The ball position given by the robot is then compared

with the real position of the ball. The results in this test may be affected by the errors of the

localization algorithm and the robot bumps while moving, but they provide a realistic view

of the problem, recreating the RoboCup environment.

In Fig. 5.6 it is possible to see the robot path along the field and the measured ball position.

In Table 5.1, it is presented an analysis of the data measured during the test. Already visible in

Fig 5.6, the average position of the ball is near the real position, being this result confirmed in

Table 5.1. Furthermore, the standard deviation of the measured ball position is low compared

with the distance between the ball and the robot. Being these measures already affected as

referred above, this result is more than acceptable for its purpose, that is, to detect the ball

at long distances. Also, note the detection ratio surrounding the 95.8% and 91.3%, both very

high. Notice the average processing time of 8 ms, below the upper limit of 33 ms necessary

for a real-time system running at 30 Hz.

Experiment Real Measures

Position Average Std Detection ratio Processing time

Penalty (2.39, 0.00) (2.47, 0.07) (0.19, 0.09) 95.8% 8 ms

Goal Line (4.39, 0.0) (4.27, -0.03) (0.32, 0.11) 91.3% 8 ms

Table 5.1: Some measures obtained for the experiments presented in Fig. 5.6. All the measures

are in meters, except for Detection ratio that shows the percentage of samples collected where

the ball was detected and Processing time presented in milliseconds.

5.2 ImageHolder class

As described in [16], it is possible to acquire images from a digital camera in various

formats. The direct manipulation of various image formats can lead to programing mistakes,

hard coded solutions and unreadable code. Creating an abstraction layer above the image

40

raw data provides directives to operate over the image without worrying with its mode or

dimensions.

The ImageHolder class was created by the author to solve the described problems, keeping

in mind its real-time purpose. All this was achieved and all the hybrid vision system software

was reviewed to use this library.

The efficiency of this library is assured using inline functions, a feature of C++ program-

ming language that allows processes speed up. The use of inline functions, eliminates the

function call overhead, reducing the time spent in intense repetitive tasks. Further explana-

tions can be found in [40].

Due to the diverse image modes used by the hybrid vision system, this library was imple-

mented with support for six image modes. The structure of the library was designed in order

to easily add image modes in the future. In the current implementation, the image modes

supported are described next.

• UNKNOWN - Not a real image mode, it is only used as a signal that the image mode

is not known;

• SEG - Segmented mode. The image is represented by one plane, 8 bits per pixel, each

bit representing a color class;

• GRAY - Gray-scale mode. The image is represented by one plane, 8 bits per pixel;

• RGB - Red, Green and Blue mode. The image is represented in three planes, 8 bits per

pixel per plane, totaling 24 bits per pixel;

• HSV - Hue saturation value mode. The image is represented in three planes, 8 bits per

pixel per plane, totaling 24 bits per pixel;

• YUV422 - Luma and chrominance mode with 422 subsampling. The image is repre-

sented in three planes, were U and V components (planes) are subsampled shared with

a ratio of 2 samples for 4 pixels.

• YUV411 - Luma and chrominance mode with 411 subsampling. The image is repre-

sented in three planes, were U and V components (planes) are subsampled with a ratio

of 1 sample for 4 pixels.

Besides holding image data, this library has the ability to read and write images into files

with the possibility of cropping the image. It is also capable of displaying the held image

into the screen over SDL library (see http://www.libsdl.org for further info). As drawing

41

http://www.libsdl.org

capabilities, the ImageHolder class permits to draw three geometric forms over the image,

squares, crosses and circles variable in size, position and color. The information about the

color of a pixel can be retrieved independently of the image mode, directly in the user preferred

mode, RGB, HSV or YUV. The direct access to the image raw data is also possible, being

this a necessary feature to the implementation of many complex image analysis algorithms.

A brief description of the class can be found in appendix A.

42

-3

-2

-1

0

1

2

3

-4 -2 0 2 4

fie
dl

 w
id

th
 (

m
et

er
s)

fiedl height (meters)

Ball in penalty mark

measured ball position
measured robot path

real ball position
field

(a)

-3

-2

-1

0

1

2

3

-4 -2 0 2 4

fie
dl

 w
id

th
 (

m
et

er
s)

fiedl height (meters)

Ball in goal line

measured ball position
measured robot path

real ball position
field

(b)

Figure 5.6: Experimental results obtained by the proposed perspective vision system using

the PerspectiveMapCalib tool. In (a) the ball was positioned in the center of the penalty

mark. In (b) the ball was positioned in the center of the goal line. The robot has performed

a defined trajectory and the position of the ball was registered. Both axis in the graphics are

in meters.

43

44

Chapter 6

Conclusions and future work

In this work, we addressed the field of robotic vision, including real-time applications,

using the example of the CAMBADA hybrid vision system.

The CAMBADA hybrid vision system was extensively described along with some new

improvements proposed and implemented by the author. The already functional Color Pro-

cessing Sub-System became much more robust and accurate with the Shadowed ball recover

algorithm and the DistanceVsPixel validation algorithm. Pushing the CAMBADA vision

system a little further, a morphological detection system was also developed by the author,

allowing to detect the ball without previously knowing its color. The Morphological Process-

ing Sub-System, the most recent development in the CAMBADA hybrid vision system and

still under development, is already functional and proved its effectiveness.

Besides the referred improvements, some tools were also developed by the author. To

accelerate the process of calibrating the robots was created the PerspectiveMapCalib, a tool

to help creating the distance map images. This tool allows a non-specialized user to calibrate

the distance map image of the perspective sub-system with trivial commands. The author

also developed the ImageHolder library, created to be a real-time library to manage images

in various modes.

The results shown in the Portuguese Robotics Open 2008, where the team placed 1st, are

an additional prove of the effectiveness of the proposed and accomplished work.

6.1 Future work

As future work, it is proposed to continue the studies in the Morphological Processing

Sub-System, in order to become a fully functional processing system. We propose the use of

45

a validation system over the points of interest represented in the Intensity Map Image (see

Fig. 2.2). This validation could be done using the perceptron algorithm or an Haar-classifier

[41, 42] (a cascade of boosted classifiers working with Haar-like features).

Reorganizing the entire hybrid vision system to become fully independent of the image

size is also an important step which would improve the system robustness and processing

speed. This last proposal would also allow to use Format7 image acquisition, permitting the

acquisition of images controlling the desired frame size and position directly on the camera’s

CCD.

The PerspectiveMapCalib tool can also be improved to correct misaligned angles currently

being discarded (considered as zero). This would create even better perspective distance map

images.

The ImageHolder library could be expanded to allow the use of more image formats and

include members to convert images from one format to another.

Future work could also take a step in the spatial-3D ball detection direction, crossing

both cameras information. This would extract information about the 3D position of the ball,

instead of assuming that the ball never leaves the ground plane.

46

Appendix A

ImageHolder

Class to hold and manipulate images.

#include <ImageHolder.h>

Public Member Functions

• ImageHolder ()

Default constructor.

• ImageHolder (ImageHolder &ImH)

Copy constructor.

• ImageHolder (enum iMode Mode, unsigned Rows, unsigned Cols, unsigned char

∗ImgBuf=NULL)

Initialize constructor.

• ∼ImageHolder ()

Destructor.

• unsigned char & operator[] (const unsigned index)

Overload to operator ’[]’.

• unsigned char & operator[] (const unsigned index) const

Overload to operator ’[]’.

47

• void clearImage (void)

Clears the ImageHolder object data.

• void copyImage (const unsigned char ∗ImgBuf)

Copy image to ImageHolder object.

• int convertImage (const ImageHolder &IH)

Convert image to ImageHolder object’s mode.

• int setImage (const unsigned char ∗ImgBuf)

Assign image buffer to ImageHolder object.

• int displayImage (SDL Surface ∗Surface, SDL Overlay ∗Overlay, SDL Rect ∗Rect)

Displays contained image through SDL functionalities.

• int drawSquare (unsigned Row, unsigned Col, ColorID Color, unsigned Size=5)

Draws a square in the image.

• int drawSquare (unsigned Row, unsigned Col, struct Rgb Value=Rgb(255, 100, 100),

unsigned Size=5)

Draws a square in the image.

• int drawCross (unsigned Row, unsigned Col, ColorID Color, unsigned Size=5)

Draws a cross in the image.

• int drawCross (unsigned Row, unsigned Col, struct Rgb Value=Rgb(255, 100, 100),

unsigned Size=5)

Draws a cross in the image.

• int drawCircle (unsigned Row, unsigned Col, ColorID Color, unsigned Size=5)

Draws a circle in the image.

• int drawCircle (unsigned Row, unsigned Col, struct Rgb Value=Rgb(255, 100, 100),

unsigned Size=5)

Draws a circle in the image.

• unsigned char ∗ image () const

48

Get pointer to image data.

• iMode mode () const

Get image mode.

• unsigned size () const

Get image size.

• unsigned rows () const

Get number of rows.

• unsigned cols () const

Get number of columns.

• int pixel (unsigned Row, unsigned Col, struct Hsv &Pixel) const

Get complete pixel info.

• int pixel (unsigned Row, unsigned Col, struct Yuv &Pixel) const

Get complete pixel info.

• int pixel (unsigned Row, unsigned Col, struct Rgb &Pixel) const

Get complete pixel info.

• unsigned pixelY (unsigned Row, unsigned Col) const

Get Y component of pixel.

• int saveRectangle (unsigned UpRow, unsigned LeftCol, unsigned DownRow, unsigned

RightCol, const char ∗FileName) const

Saves a rectangle from the image to a file.

• int saveSquare (unsigned Row, unsigned Col, unsigned Size, const char ∗FileName)

const

Saves a square from the image to a file.

• int saveFrame (const char ∗FileName) const

Saves all the image to a file.

49

Private Member Functions

• int getPixel (unsigned Row, unsigned Col, unsigned &c1, unsigned &c2, unsigned &c3)

const

Used to help pixel(...) function. This is an image mode independent function.

• int setPixel (unsigned Row, unsigned Col, unsigned c1=0, unsigned c2=0, unsigned

c3=0)

Used to help many functions.

Static Private Member Functions

• static void Rgb2Hsv (struct Rgb, struct Hsv &)

Used to help pixel(...) function.

• static void Rgb2Yuv (struct Rgb, struct Yuv &)

Used to help pixel(...) function.

• static void Yuv2Rgb (struct Yuv, struct Rgb &)

Used to help pixel(...) function.

Private Attributes

• unsigned char ∗ idata

Pointer to image data.

• unsigned irows

Number of rows in image.

• unsigned icols

Number of columns in image.

• unsigned isize

Size of image, in bytes.

• iMode imode

50

Image mode.

• bool idata priv

Describes if image data was allocated by this object itself.

A.1 Detailed Description

Class to hold and manipulate images.

This class can work images based on their type, number of rows and number of columns.

Warning: Restrictions:

• Maximum resolution (UINT MAX, UINT MAX).

• Image formats {SEG, GRAY, RGB, HSV and YUV}.

• Pixel component magnitude [0, UCHAR MAX].

A.2 Constructor & Destructor Documentation

ImageHolder::ImageHolder ()

Default constructor.

Initializes an ImageHolder object with size 0, and mode UNKNOWN.

References icols, idata, idata priv, imode, irows, and isize.

ImageHolder::ImageHolder (ImageHolder & ImH)

Copy constructor.

Initializes an ImageHolder object based on another previously declared.

References icols, idata, idata priv, imode, irows, and isize.

ImageHolder::ImageHolder (enum iMode Mode, unsigned Rows, unsigned Cols,

unsigned char ∗ ImgBuf = NULL)

Initialize constructor.

Initializes an ImageHolder object with info passed by arguments.

51

Parameters: Mode Desired image mode.

Rows Desired image rows.

Cols Desired image columns.

ImgBuf Pointer to image buffer to use. If NULL an empty buffer will be created.

References icols, idata, idata priv, imode, irows, and isize.

ImageHolder::∼ImageHolder ()

Destructor.

Free all buffers previously created by the own object.

References idata, and idata priv.

A.3 Member Function Documentation

int ImageHolder::getPixel (unsigned Row, unsigned Col, unsigned & c1, un-

signed & c2, unsigned & c3) const [private]

Used to help pixel(...) function. This is an image mode independent function.

Parameters: Row Indicates the row to access.

Col Indicates the column to access.

c1 The first image component.

c2 The second image component.

c3 The third image component.

References icols, idata, imode, and irows.

Referenced by pixel(), and pixelY().

int ImageHolder::setPixel (unsigned Row, unsigned Col, unsigned c1 = 0, un-

signed c2 = 0, unsigned c3 = 0) [private]

Used to help many functions.

Parameters: Row Indicates the row to access.

Col Indicates the column to access.

52

c1 The first color component.

c2 The second color component.

c3 The third color component.

References icols, idata, imode, and irows.

Referenced by drawCircle(), drawCross(), and drawSquare().

unsigned char & ImageHolder::operator[] (const unsigned index) [inline]

Overload to operator ’[] ’.

Overloads the operator ’[] ’ so it can be used with ImageHolder object. This makes

possible a direct access to the image data array.

Parameters: index Image data array index.

Returns: Reference to the image data array pointed by the index passed by argument.

References idata.

unsigned char & ImageHolder::operator[] (const unsigned index) const [inline]

Overload to operator ’[] ’.

Overloads the operator ’[] ’ so it can be used with ImageHolder object. This makes

possible a direct access to the image data array.

Parameters: index Image data array index.

Returns: Reference to the image data array pointed by the index passed by argument.

References idata.

void ImageHolder::copyImage (const unsigned char ∗ ImgBuf)

Copy image to ImageHolder object.

Copies the image from the argument to the ImageHolder object.

Parameters: ImgBuf Pointer to the image to be copied.

53

Warning: This function doens’t check for buffer lenght. Use with precaution.

References idata, and isize.

Referenced by convertImage().

int ImageHolder::convertImage (const ImageHolder & IH)

Convert image to ImageHolder object’s mode.

Converts the data from the argument to the ImageHolder object.

Parameters: IH ImageHolder to be converted.

References copyImage(), icols, idata, image(), imode, irows, pixel(), and Yuv::y.

int ImageHolder::setImage (const unsigned char ∗ ImgBuf)

Assign image buffer to ImageHolder object.

Assigns the image buffer passed on by argument to the ImageHolder object.

Parameters: ImgBuf Pointer to the image buffer to be assigned.

References idata, and idata priv.

int ImageHolder::displayImage (SDL Surface ∗ Surface, SDL Overlay ∗ Overlay,

SDL Rect ∗ Rect)

Displays contained image through SDL functionalities.

Parameters: Surface Pointer to SDL Surface to be used to display the current image.

Overlay Pointer to SDL Overlay to be used to display the current image.

Rect Pointer to SDL Rect to be used to display the current image.

References icols, idata, imode, irows, Yuv::u, and Yuv::v.

int ImageHolder::drawSquare (unsigned Row, unsigned Col, ColorID Color =

CBLUE, unsigned Size = 5)

Draws a square in the image.

Given the parameters draws a square in the image holded by the ImageHolder object.

54

Warning: Use this function to draw squares in segmentated images.

Parameters: Row Center of the square (row coordinate).

Col Center of the square (column coordinate).

Color Color of the square previously defined in ColorID.

Size Square size in pixels.

References imode.

int ImageHolder::drawSquare (unsigned Row, unsigned Col, struct Rgb Value

= Rgb(255,100,100), unsigned Size = 5)

Draws a square in the image.

Given the parameters draws a square in the image holded by the ImageHolder object.

Warning: Do not use this function to draw squares in segmentated images. For that purpose

use the ”drawSquare(int, int, ColorID, int)”.

Parameters: Row Center of the square (row coordinate).

Col Center of the square (column coordinate).

Value Color of the square in rgb. This parameter can be passed like ’Rgb(rrr, ggg,

bbb)’.

Size Square size in pixels.

References Rgb::b, Rgb::g, icols, imode, irows, Rgb::r, Rgb2Yuv(), setPixel(), Yuv::u,

Yuv::v, and Yuv::y.

int ImageHolder::drawCross (unsigned Row, unsigned Col, ColorID Color, un-

signed Size = 5)

Draws a cross in the image.

Given the parameters draws a cross in the image holded by the ImageHolder object.

Warning: Use this function to draw crosses in segmentated images.

Parameters: Row Center of the cross (row coordinate).

55

Col Center of the cross (column coordinate).

Color Color of the cross previously defined in ColorID.

Size Cross size in pixels.

References imode.

int ImageHolder::drawCross (unsigned Row, unsigned Col, struct Rgb Value =

Rgb(255,100,100), unsigned Size = 5)

Draws a cross in the image.

Given the parameters draws a cross in the image holded by the ImageHolder object.

Warning: Do not use this function to draw crosses in segmentated images. For that purpose

use the ”drawCross(int, int, ColorID, int)”.

Parameters: Row Center of the cross (row coordinate).

Col Center of the cross (column coordinate).

Value Color of the cross in rgb. This parameter can be passed like ’Rgb(rrr, ggg, bbb)’.

Size Cross size in pixels.

References Rgb::b, Rgb::g, icols, imode, irows, Rgb::r, Rgb2Yuv(), setPixel(), Yuv::u,

Yuv::v, and Yuv::y.

int ImageHolder::drawCircle (unsigned Row, unsigned Col, ColorID Color, un-

signed Size = 5)

Draws a circle in the image.

Given the parameters draws a circle in the image holded by the ImageHolder object.

Warning: Use this function to draw circles in segmentated images.

Parameters: Row Center of the circle (row coordinate).

Col Center of the circle (column coordinate).

Color Color of the circle previously defined in ColorID.

Size Cross size in pixels.

References imode.

56

int ImageHolder::drawCircle (unsigned Row, unsigned Col, struct Rgb Value =

Rgb(255,100,100), unsigned Size = 5)

Draws a circle in the image.

Given the parameters draws a circle in the image holded by the ImageHolder object.

Warning: Do not use this function to draw circles in segmentated images. For that purpose

use the ”drawCircle(int, int, ColorID, int)”.

Parameters: Row Center of the circle (row coordinate).

Col Center of the circle (column coordinate).

Value Color of the circle in rgb. This parameter can be passed like ’Rgb(rrr, ggg, bbb)’.

Size Circle size in pixels.

References Rgb::b, Rgb::g, icols, imode, irows, Rgb::r, Rgb2Yuv(), setPixel(), Yuv::u,

Yuv::v, and Yuv::y.

unsigned char ∗ ImageHolder::image () const [inline]

Get pointer to image data.

Access to the image data address.

Returns: Pointer to the image data buffer contained in the ImageHolder object.

References idata.

Referenced by convertImage().

iMode ImageHolder::mode () const [inline]

Get image mode.

Access to image mode info.

Returns: Image mode used by the ImageHolderp.classImageHolder object.

References imode.

57

unsigned ImageHolder::size () const [inline]

Get image size.

Gets image size in bytes.

Returns: Number of bytes occupied by the image.

References isize.

Referenced by saveSquare().

unsigned ImageHolder::rows () const [inline]

Get number of rows.

Access to the number of rows in the image.

Returns: Number of rows in the image.

References irows.

unsigned ImageHolder::cols () const [inline]

Get number of columns.

Access to the number of columns in image.

Returns: Number of columns in image.

References icols.

int ImageHolder::pixel (unsigned Row, unsigned Col, struct Hsv & Pixel) const

Get complete pixel info.

Access to each pixel complete info (because some images types have more than one com-

ponent in each pixel).

Parameters: Row Pixel row coordinate.

Col Pixel rolumn coordinate.

Pixel Reference to Hsv structure in witch the info about the pixel(row,col) will be

returned.

58

References getPixel(), icols, imode, irows, Rgb::Rgb(), Rgb2Hsv(), and Yuv2Rgb().

Referenced by convertImage(), and saveRectangle().

int ImageHolder::pixel (unsigned Row, unsigned Col, struct Yuv & Pixel) const

Get complete pixel info.

Access to each pixel complete info (because some images types have more than one com-

ponent in each pixel).

Parameters: Row Pixel row coordinate.

Col Pixel rolumn coordinate.

Pixel Reference to Yuv structure in witch the info about the pixel(row,col) will be

returned.

References getPixel(), icols, imode, irows, Rgb::Rgb(), and Rgb2Yuv().

int ImageHolder::pixel (unsigned Row, unsigned Col, struct Rgb & Pixel) const

Get complete pixel info.

Access to each pixel complete info (because some images types have more than one com-

ponent in each pixel).

Parameters: Row Pixel row coordinate.

Col Pixel rolumn coordinate.

Pixel Reference to Rgb structure in witch the info about the pixel(row,col) will be

returned.

References getPixel(), icols, imode, irows, Rgb::Rgb(), and Yuv2Rgb().

unsigned ImageHolder::pixelY (unsigned Row, unsigned Col) const

Get Y component of pixel.

Access to each pixel Y component

Parameters: Row Pixel row coordinate.

59

Col Pixel rolumn coordinate.

References getPixel(), icols, idata, imode, and irows.

Referenced by saveRectangle().

int ImageHolder::saveRectangle (unsigned UpRow, unsigned LeftCol, unsigned

DownRow, unsigned RightCol, const char ∗ FileName) const

Saves a rectangle from the image to a file.

Givin the Upper-Left and Bottom-Right coordinates, a rectangle from the image is saved

to a file.

Parameters: UpRow Upper limit.

LeftCol Left limit.

DownRow Bottom limit.

RightCol Right limit.

FileName Name of the file to save (append) the rectangle image.

References Rgb::b, Rgb::g, icols, imode, irows, pixel(), pixelY(), Rgb::r, and Yuv2Rgb().

Referenced by saveFrame(), and saveSquare().

int ImageHolder::saveSquare (unsigned Row, unsigned Col, unsigned Size, const

char ∗ FileName) const

Saves a square from the image to a file.

Access to each pixel Y component

Parameters: Row Center row coordinate.

Col Center colum coordinate.

Size Square side size.

FileName Name of the file to save (append) the square image.

References saveRectangle(), and size().

60

int ImageHolder::saveFrame (const char ∗ FileName) const

Saves all the image to a file.

Parameters: FileName Name of the file to save (append) the image.

References icols, irows, and saveRectangle().

61

62

Bibliography

[1] R. Hafner, S. Lange, M. Lauer, and M. Riedmiller. Brainstormers tribots team descrip-

tion. Technical report, Institute of Computer Science, Institute of Cognitive Science,

2008. University of Osnabrü, Germany.

[2] O. Zweigle, U. P. Käppeler, T. Rühr, K. Haussermann, R. Lafrenz, F. Schreiber,

A. Tamke, H. Rajaie, A. Burla, M. Schanz, and P. Levi. Cops stuttgart team description

2007. Technical report, IPVS, 2007. University of Stuttgart, Germany.

[3] B. Kimiyaghalam, M. Y. A. Khanian, H. R. Fard, M. Montazeri, S. Moein, S. Morshedi,

S. Ebrahimijam, H. Hosseini, and M. Hosseini KH. Mrl middle size team: 2008 team

description paper. Technical report, Mechatronics Research Laboratory, 2008. Islamic

Azad University of Qazvin, Iran.

[4] J. J. M. Lunenburg and G. v.d. Ven. Tech united team description. Technical report,

Control Systems Technology Group, 2008. Eindhoven University of Technology, Nether-

lands.

[5] D. Jahshan. Mu-penguins 2008 team description. Technical report, Department of Elec-

trical and Electronic Engineering, 2008. The University of Melbourne, Australia.

[6] B. Bouchard, D. Lapensée, M. Lauzon, S. Pelletier-Thibault, J.-C. Roy, and G. Scott.

Robofoot Épm team description paper 2008. Technical report, Mechatronics Laboratory,

2008. École Polytechnique de Montréal, Canada.

[7] W. Chen, Q. Cao, J. Wang, and C. Leng. Jiaolong2008 team description. Technical

report, Institute of Automation, Research Institute of Robotics, 2008. Shanghai Jiao

Tong University, China.

[8] Y. Sato, S. Yamaguchi, Y. Kitazumi, Y. Ogawa, Y. Yonemura, T. Ueoka, Y. Wada,

Y. Takemura, A. A. F. Nassiraei, I. Godler, K. Ishii, and H. Miyamoto. Hibikino-musashi

63

team description paper. Technical report, Kyushu Institute of Technology, 2008. The

University of Kitakyushu, japan.

[9] H. Zhang, H. Lu, X. Wang, F. Sun, X. Ji, D. Hai, F. Liu, L. Cui, and Z. Zheng. Nubot

team description paper 2008. Technical report, College of Mechatronics and Automation,

2008. National University of Defense Technology, China.

[10] A. J. R. Neves, G. Corrente, and A. J. Pinho. An omnidirectional vision system for

soccer robots. In Proc. of the EPIA 2007, volume 4874 of Lecture Notes in Artificial

Inteligence, pages 499–507. Springer, 2007.

[11] P. M. R. Caleiro, A. J. R. Neves, and A. J. Pinho. Color-spaces and color segmentation for

real-time object recognition in robotic applications. Revista do DETUA, 4(8):940–945,

June 2007.

[12] A. J. R. Neves, D. A. Martins, and A. J. Pinho. A hybrid vision system for soccer robots

using radial search lines. In Proc. of the 8th Conference on Autonomous Robot Systems

and Competitions, Portuguese Robotics Open - ROBOTICA’2008, pages 51–55, Aveiro,

Portugal, april 2008.

[13] A. Dumitras and F. Kossentini. Fast and high performance image subsampling using

feedforward neural networks. IP, 9(4):720–728, April 2000.

[14] A. Dumitras and F. Kossentini. High-order image subsampling using feedforward artifi-

cial neural networks. IP, 10(3):427–435, March 2001.

[15] A. J. R. Neves, A. J. Pinho, D. A. Martins, and I. Pinheiro. An efficient omnidirectional

vision system for real-time object detection. Submitted, 2008.

[16] I. Pinheiro. Automatic calibration of the cambada team vision system. Master’s thesis,

Universidade de Aveiro, 2008.

[17] U. Kaufmanns, R. Reichle, C. Hoppe, and P. Baer. An unsupervised approach for

adaptive color segmentation. In Proc. of the 2nd Int. Conference on Computer Vision

Theory and Applications, pages 3–12, Barcelona, Spain, March 2007.

[18] G. Mayer, H. Utz, and G. Kraetzschmar. Playing robot soccer under natural light: A

case study. In Proc. of the RoboCup 2003, volume 3020 of Lecture Notes on Artificial

Inteligence. Springer, 2003.

[19] B. Cunha, J. L. Azevedo, N. Lau, and L. Almeida. Obtaining the inverse distance map

from a non-svp hyperbolic catadioptric robotic vision system. In Proc. of the RoboCup

2007, Atlanta, USA, 2007.

64

[20] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems

Journal, 4(1):25–30, 1965.

[21] L. Almeida, F. Santos, T. Facchinetti, P. Pedreira, V. Silva, and L. S. Lopes. Coordinat-

ing distributed autonomous agents with a real-time database: The cambada project. In

Proc. of the 19th International Symposium on Computer and Information Sciences, IS-

CIS 2004, volume 3280 of Lecture Notes in Computer Science, pages 878–886. Springer,

2004.

[22] S. Mitri, S. Frintrop, K. Pervölz, H. Surmann, and A. Nuchter. Robust object detec-

tion at regions of interest with an application in ball recognition. In Proc. of the 2005

IEEE International Conference on Robotics and Automation, ICRA 2005, pages 125–130,

Barcelona, Spain, April 2005.

[23] A. Treptow and A. Zell. Real-time object tracking for soccer-robots without color infor-

mation. Robotics and Autonomous Systems, 48(1):41–48, August 2004.

[24] Fourth Workshop on Intelligent Solutions in Embedded Systems. Embedded Real-Time

Ball Detection Unit for the YABIRO Biped Robot, June 2006.

[25] J. Zou, H. Li, B. Liu, and R. Zhang. Color edge detection based on morphology. In

First International Conference on Communications and Electronics, ICCE 2006, pages

291–293, 2006.

[26] T. T. Zin, H. Takahashi, and H. Hama. Robust person detection using far infrared

camera for image fusion. In Second International Conference on Innovative Computing,

Information and Control, ICICIC 2007, pages 310–310, 2007.

[27] S. E. Umbaugh. Computer Vision and Image Processing. Prentice Hall, 1999.

[28] Y. Zou and W.T.M. Dunsmuir. Edge detection using generalized root signals of 2-d

median filtering. In Proc. of the International Conference on Image Processing, 1997,

volume 1, pages 417–419, 1997.

[29] T. Blaffert, S. Dippel, M. Stahl, and R. Wiemker. The laplace integral for a water-

shed segmentation. In Proc. of the International Conference on Image Processing, 2000,

volume 3, pages 444–447, 2000.

[30] R. Boyle and R. Thomas. Computer Vision: A First Course. Blackwell Scientific Pub-

lications, 1988.

65

[31] J. F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(6), November 1986.

[32] E. Davies. Machine Vision: Theory, Algorithms and Practicalities. Academic Press,

1990.

[33] R. Gonzalez and R. Woods. Digital Image Processing. Addison-Wesley Publishing Com-

pany, 1992.

[34] P.-K. Ser and W.-C. Siu. Invariant hough transform with matching technique for the

recognition of non-analytic objects. In IEEE International Conference on Acoustics,

Speech, and Signal Processing, ICASSP 1993., volume 5, pages 9–12, 1993.

[35] Y.-J. Zhang and Z.-Q. Liu. Curve detection using a new clustering approach in the

hough space. In IEEE International Conference on Systems, Man, and Cybernetics,

2000, volume 4, pages 2746–2751, 2000.

[36] W. E. L. Grimson and D. P. Huttenlocher. On the sensitivity of the hough transform for

object recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12:1255–

1274, 1990.

[37] D. Ballard and C. Brown. Computer Vision. Prentice Hall, 1982.

[38] A. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[39] D. Vernon. Machine Vision. Prentice Hall, 1991.

[40] B. Eckel. Thinking in C++, volume 1. Prentice Hall, second edition, 2000.

[41] P. Karras and N. Mamoulis. The haar+ tree: A refined synopsis data structure. In IEEE

23rd International Conference on Data Engineering, ICDE 2007, pages 436–445, 2007.

[42] E. F. Ersi and J. S. Zelek. Local graph matching for face recognition. In IEEE Workshop

on Applications of Computer Vision, WACV 2007, pages 3–3, 2007.

66

	Introduction
	The CAMBADA team
	Other teams in RoboCup middle size league
	Objectives achieved

	Hybrid vision system
	Hardware architecture
	Software architecture
	Calibration of the vision system
	Calibration of the camera parameters
	Color calibration
	Distance mapping calibration

	Color processing sub-system
	Color classification
	Color extraction
	Object detection

	Color ball detection improvements
	Shadowed ball recover algorithm
	DistanceVsPixel validation algorithm
	Results

	Morphological ball detection
	Overview
	Edge detection
	Sobel operator
	Laplace operator
	Canny operator
	Choosing an edge detector

	Hough transform
	Implementation

	Results

	Developed Tools
	The PerspectiveMapCalib
	Results

	ImageHolder class

	Conclusions and future work
	Future work

	ImageHolder
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

