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Abstract. This paper proposes a solution to detect standard FIFA balls, inde-

pendent of their color, in the context of the RoboCup Middle Size League. The

proposed work is being developed for the robotic soccer team of the University

of Aveiro, CAMBADA (Cooperative Autonomous Mobile roBots with Advanced

Distributed Architecture). The vision system of CAMBADA robots are based on

an hybrid vision system, formed by an omnidirectional vision sub-system and a

perspective vision sub-system, that together can analyze the environment around

the robots, both at close and long distances. The proposed approach is based on

the use of an edge detection algorithm followed by the use of the circular Hough

transform. Despite the proposed method is under development, the preliminary

experimental results are very encouraging. Moreover, the processing time allows

real-time ball detection.

Keywords: Robotics; robotic soccer; computer vision; object recognition; omnidi-

rectional vision; color classification.

1 Introduction

The Middle Size League (MSL) competition of RoboCup is a standard real-world test

for autonomous multi-robot control. Being yet a color-coded environment, despite the

recent changes introduced, such as the goals without color, recognizing colored objects

such as the orange ball, the black obstacles, the green field and the white lines is a basic

ability for robots.

One problem domain in RoboCup is the field of Computer Vision, responsible for

providing basic information that is needed for calculating the behavior of the robots.

Catadioptric vision systems (often named omnidirectional vision systems) have cap-

tured much interest in the last years, because they allow a robot to see in all directions

at the same time without having to move itself or its camera [1–5]. However, due to the

huge dimension of the current field, several teams have also included in their robots a

perspective camera to detect objects far from the robot [6].

On the RoboCup MSL, the color codes tend to disappear as the competition evolves.

Being the color of the ball the next color scheduled to vary, in this paper we propose a
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solution to detect balls independently of their color. This solution is based in a morpho-

logical analysis of the image, being strictly directed to detect round objects in the field,

in this case the ball.

This paper is organized as follows. In Section 2 we describe the design of our robots,

in particular their vision system. Section 3 presents the proposed algorithm for real-time

generic ball recognition. In Section 4 we present experimental results obtained by our

system. Finally, in Section 5, we draw some conclusions.

2 Architecture of the robots

The vision system of CAMBADA robots is based on an hybrid vision system, formed by

an omnidirectional vision sub-system and a perspective vision sub-system, that together

can analyze the environment around the robots, both at close and long distances (see

Fig. 1).

Fig. 1. One of the robots used by the CAMBADA middle-size robotic soccer team and its hybrid

vision system.

The information regarding close objects, like white lines of the field, other robots

and the ball, are acquired through the omnidirectional system, whereas the perspective

system is used to locate other robots and the ball at long distances, which are difficult

to detect using the omnidirectional vision system.

The software architecture is based on a distributed paradigm grouping main tasks in

different modules. The software can be split in three main modules, namely the Utility

Sub-System, the Color Processing Sub-System and the Morphological Processing Sub-

System, as can be seen in Fig. 2. Each one of these sub-systems labels a domain area

where their processes fit, as the case of Acquire Image and Display Image in the Utility

Sub-System. As can be seen in Color Processing Sub-System, proper color classifica-

tion and extraction processes were developed, along with an object detection process to



extract information, through color analysis, from the acquired image [7, 8]. The Mor-

phological Processing Sub-System, explained in Section 3, presents an early version of

a color independent ball detection algorithm, that is still under heavy study and devel-

opment.

Fig. 2. The software architecture of the vision system developed for the CAMBADA robotic

soccer team.

Despite the obvious differences between the omnidirectional and the perspective

sub-systems, the software architecture used in both is the same, changing only the Image

Mask & Radial Sensors and the Distance Mapping Image [7].

3 Proposed approach

Morphological object recognition through image analysis has became more robust and

accurate in the past years, whereas still very time consuming even to modern personal

computers [9–11]. Being the RoboCup a real-time environment, available processing

time can become a big constrain when analyzing large amounts of data or executing

complex algorithms. Many of the algorithms proposed during a previous research work

showed their effectiveness but, unfortunately, their processing time is in some cases

over one second [9].

The Morphological Processing Sub-System (see Fig. 2) was developed to overcome

this obstacle using a two pass analysis to detect the ball. First, the image is searched

for points of interest (potential locations) where balls can be found. Then a validation

system is applied to the spots previously found to discard false ball locations.

The search for potential spots is conducted taking advantage of morphological char-

acteristics of the ball (round shape) using a feature extraction technique known as the

Hough transform. First used to identify lines in images, the Hough [21–23,16] trans-

form has been generalized, through the years, to identify positions of arbitrary shapes,

most commonly circles or ellipses, in images.



To feed the Hough transform process, it is necessary a binary image with the edge

information of the objects. This image, Edges Image, is obtained using an image opera-

tor commonly called edge detector. In Section 3.1 it is presented an explanation of this

process and its implementation.

3.1 Edge detection

Being this the first image processing step in the morphological detection, it must be as

efficient and accurate as possible in order to not compromise the following processes.

Besides being fast to calculate, the pretended resulting image must be absent of noise as

much as possible, with well defined boundaries and be motion blur tolerant. Be tolerant

to motion blur means that even when the objects present blur deformation in the image,

the edge detector can retrieve its contours. In Fig. 3 b) it is shown an example of the

motion blur deformation.

Before making the choice, some image edge detectors were compared. The com-

parison was made between the three main image operators used to find edges, Sobel

[12–15], Laplace [15, 16] and Canny [17–20]. These are, by far, the most well known

and efficient image operators used in edge detection. The tests occurred under two dis-

tinct situations: with the ball standing still and ball moving fast through the field. The

test with the ball moving fast was realized to study the motion blur effect in the edge de-

tectors on high speed objects captured with relatively low frame rates (30 fps). Figure 3

shows an image of each studied scenario.

(a) (b)

Fig. 3. Two examples of typical images captured in the RoboCup environment. In (a) a test image

with the ball standing still and in (b) with the ball moving at high speed.

The three edge detection operators are based on convolving the image with a small,

separable, and integer valued filter in the horizontal and vertical directions and are there-

fore relatively inexpensive in terms of computations. In both tests, all the operators used

a convolution window of size 3.

The Sobel operator is widely used in edge detection algorithms [12–15]. It is a

discrete differentiation operator, that computes an approximation of the gradient of the



image intensity function. This approximation is relatively crude, in particular for high

frequency variations in the image.

By calculating the gradient of the image intensity at each point, the operator gives

the direction of the largest possible increase from light to dark and the rate of change

in that direction. This shows how “abruptly” or “smoothly” the image changes at that

point, and therefore how likely that part of the image represents an edge, as well as how

that edge is likely to be oriented.

In Fig. 4 we can see the resulting images of the Sobel edge detector applied to the

images in Fig. 3.

(a) (b)

Fig. 4. Two examples previously presented in Fig. 3, now with the Sobel operator applied. In (a)

a test image with the ball standing still and in (b) with the ball moving at high speed.

The Laplace operator, as the Sobel, is commonly used in image processing as an

edge detection algorithm [15, 16]. Also called Laplacian, it is denoted by ∆ or ∇2 and

is a differential operator.

In Fig. 5, the resulting images of the Laplace edge detector applied to the images in

Fig. 3 are shown.

The Canny edge detection operator uses a multi-stage algorithm to detect a wide

range of edges in images. The Canny operator was developed to be an optimal edge

detection algorithm [17–20], presenting the following features as the optimal ones:

– Good detection - the algorithm should mark as many real edges in the image as

possible;

– Good localization - edges marked should be as close as possible to the edge in the

real image;

– Minimal response - a given edge in the image should only be marked once, and

where possible, image noise should not create false edges.

In the Canny operator, these requirements are obtained using calculus of variations,

a technique used to find a function which optimizes a functional. The optimal function



(a) (b)

Fig. 5. Two examples previously presented in Fig. 3, now with the Laplace operator applied. In

(a) a test image with the ball standing still and in (b) with the ball moving at high speed.

in Canny detector is described by the sum of four exponential terms, but can be approx-

imated by the first derivative of a Gaussian. Using a Canny filter it is possible to obtain

an image of edges with edges with size of 1 pixel, due to its non-maximal suppression

properties.

In Fig. 6 the resulting images of the Canny edge detector applied to the images in

Fig. 3 are presented.

(a) (b)

Fig. 6. Two examples previously presented in Fig. 3, now with the Canny operator applied. In (a)

a test image with the ball standing still and in (b) with the ball moving at high speed.

To choose the best edge detector, the results from the tests will be compared taking

in account the image of edges and processing time needed by each edge detector. In one

hand, the real-time capability must be assured with low processing times. In the other



hand, the algorithm must be able to detect the edges of the ball independently of its

motion blur effect due to the speed.

Note that in Figs. 4, 5 and 6, the edges are represented by the black pixels. In Fig. 4

it is possible to see the bad results provided by the Sobel edge detector. The edges are

hard to see and the ball is almost invisible. In Fig. 5, the results improved a little. With

this edge detector, the ball can be distinguished when standing still, but when the ball

is moving a little faster, this edge detector delivers bad results. In Fig. 6, the ball can be

seen perfectly when standing still. When moving, the ball can also be pointed out, but

not as clearly as when it is standing still. Comparing Fig. 4 with Fig. 5 and Fig. 6, it is

notorious the superior results provided by the Canny edge detector.

During these tests, the processing time of each algorithm was measured, being their

mean time presented in Table 1. A first look at the mean time spent for each edge

detector (see Table 1) may point out the Canny as the worst choice. In fact, the Canny

processing time is the highest between the ones tested but, even so, it is fast enough to

be used in real-time applications, and the resulting edge images show the effectiveness

of this edge detector, way above the others.

Edge detector Sobel Laplace Canny

Average processing time 5.17 4.11 10.59

Table 1. Average processing time obtained from the three tested edge detection algorithms. All

times are in milliseconds.

Since the Canny filter was developed to be an “optimal edge detector”, it was ex-

pected from the beginning its supremacy in the results, being finally confirmed.

3.2 Hough transform

The Hough transform is a technique widely used to find instances of objects, of a certain

class of shapes (lines, circles or even ellipses) by a voting procedure [21–23, 16]. Note

that finding the object is different from validating the object and with this method the

image is only searched for points of interest. This voting procedure is carried out in a

parameter space, from which object candidates are obtained as local maxima in a so-

called Intensity Map Image (see Fig. 2) that is explicitly constructed by the algorithm

for computing the Hough transform. Follows a detailed description of the algorithm

implementation and optimization for real-time purposes, and the results.

In Fig. 7, it is shown an example of the algorithm used, where the dark continuous

lines represent the edges found in the Edges Image and the dashed lines are the result

from the Hough transform over discrete spots of the continuous lines. Due to the Hough

circular transform especial features, a big round object in the Edges Image would pro-

duce in the Intensity Map Image a very intense peak in the center of the object, as shown

on the left side of Fig. 7. For contrast, a non-round object would produce areas of low

intensity in the Intensity Map Image, as represented in the right side of Fig. 7.



Fig. 7. Hough transform example. On the left, edges from the ball. On the right, edges from the

field white lines.

This approach rises the following problem: as the ball moves away, its edge circle

size scales down in the image. To solve this problem, information about the distance

between the robot center and the ball is used to adjust the Hough transform.

As this algorithm requires drawing circles (in the Intensity Map Image) centered in

the pixel actually being processed, it was developed a tool to accelerate this operation.

Based in predefined circle sizes and in the image dimensions, an array of offsets is

created in memory for each circle size. When added with the index of the pixel where

the circle has to be centered, this array of offsets will directly map the circle in the

pixels of the image, reducing drastically the processing time commonly needed for

circle creation.

To improve the robustness of this algorithm, some extra details are taken into ac-

count. To obtain a clean image, the edges created by the robot reflection in the mirror

are removed using information from the Mask Image [7, 8]. Furthermore, although the

FIFA rules do not have restrictions for the ball color, it is considered that the ball is

never green. This last assumption reduces the potential risk of false positives in the

middle of the field due to other robots over white lines, and crossing white lines. To

do so, information from the Labels Image [7, 8] is compared against the current pixel

being processed. And finally, because distant balls are very irregular in the Edges Im-

age, due to its reduced size, distant edges are discarded in the Hough transform to avoid

erroneous false points of interest.

In some situations, in particular when the ball is not present in the field, the proposed

method finds false ball positives. To reduce this problem and improve the ball informa-

tion reliability, we proposed a validation system which would discard false positives

based on information from the Intensity Map Image and Labels Image.

This validation is achieved by a two-steps algorithm. First, the Intensity Map Image

is searched for local maximum points. These points are then filtered by a threshold limit

after what are named as points of interest. Then, the green color of the ground is used to

decide whether the point of interest is or not a valid ball. As the major number of false

positives appear over the intersections of white lines, these areas are always surrounded

by the green color of the field in the Labels Image. Acting accordingly to the distance

between the robot and the point of interest, the validation system analyzes the image in



the area surrounding the point, and if this area has more than a predefined percentage

of green pixels, then the point of interest is discarded.

The algorithms described in this section were implemented both in the omnidirec-

tional and perspective image sub-systems.

4 Experimental results

In Figs. 8 and 9 we can see an example of the Morphological Processing Sub-System

pipeline, presented in Fig. 2. As can be observed, the ball in the Edges Image (Fig. 9)

is not perfectly circular. Even so, as the Hough transform is very tolerant to gaps in

feature boundary descriptions and is relatively unaffected by image noise [17, 24–26],

it still performs well, as can be seen in Fig. 8. Notice that the center of the ball presents

a very high peak when compared to the rest of the image in Fig. 9 b).

Fig. 8. Example of a captured image using the morphological ball detection system. The cross

over the ball points out the detected position.

To assure good results in RoboCup competitions, the system was tested with the al-

gorithms described above. Testing systems in working conditions generates much more

realistic results. For that purpose, the robot was moved along a predefined path through

the robotic football field, leaving the ball in a known location. The ball position given

by the robot is then compared with the real position of the ball. The results in this test

may be affected by the localization algorithm errors and the robot bumps while moving,

being these external errors outside the scope of this study.

The robot path in the field may be seen in Fig. 10, along with the measured ball

position. It is possible to notice that the average of the measured positions of the ball is

almost centered in the real ball position, showing the effectiveness of this system. We

obtained a very high detection ratio (near 100%) and a great accuracy, with the average

measures very near the real ball position. However, with the proposed approach, the

omnidirectional vision sub-system can detect the ball with this precision until distances

up to 3 meters. With the perspective vision sub-system we can correctly detect the ball

at higher distances (up to 6 meters).



(a) (b)

Fig. 9. In (a) the example previously presented in Fig. 8, now with the Canny edge detector

applied. Notice as the robot reflection was avoided from the Edges Image. In (b) the example

presented in a), now with the Hough transform applied. Notice that far edges are not processed

and results over green pixels are not considered.
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Fig. 10. Experimental results obtained by the omnidirectional sub-system using the morphologi-

cal ball detection. In this experience the ball was positioned in two known positions of the field.

The robot has performed a predefined trajectory while the position of the ball was registered.

Both axis in the graphics are in meters.

In Fig. 11 it is presented an example of a ball detection using the perspective vision

sub-system.

The average processing time of the proposed approach is approximately 25 mil-

liseconds, both for omnidirectional and perspective vision sub-systems. Note that, the

experimental results were obtained with acquired images of 640×480 pixels. Moreover,

it was used a laptop with an Intel Core 2 duo at 2.0 GHz and 1 GB of memory.

5 Final remarks

This paper proposes a solution to detect standard FIFA balls, independent of their color,

in the context of the RoboCup Middle Size League. The proposed approach is based



(a) (b)

Fig. 11. Example of an image processed by the perspective sub-system using the morphological

ball detection. In (a) the Edges Images and in (b) the Intensity Image. The black square shows

the area being analysed over the point of interest. The black circle with the cross points out the

detected ball location.

on the use of an edge detection algorithm followed by the use of the circular Hough

transform.

Our experimental results show that the Canny edge detector is the best choice among

the other edge detection algorithms studied, considering the blur effect resulting from

the movement of the ball.

The Hough transform revealed to be a good method to detect circular shaped ob-

jects, and showed to be very tolerant to gaps in feature boundary descriptions and is

relatively unaffected by image noise.

Despite the proposed method is under development, the preliminary experimental

results are very encouraging. This method will be used this year by the CAMBADA

team in the mandatory challenge at RoboCup 2008, in Suzhou, China.
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