

Abstract— This paper presents the architecture,

information sharing and team coordination methodologies of

the CAMBADA RoboCup middle-size league (MSL) team.

An overview of the software architecture and individual

decision capabilities of the agents is also presented. The

information sharing and integration strategy is designed to

both improve the accuracy of world models and to support

the team coordination. Part of the coordination model is

based on previous work in the Simulation League, which has

been adapted to the MSL environment. With the described

design, CAMBADA reached the 1st place in the Portuguese

Robotics Open in 2007 and the 5th place in RoboCup 2007

world championship.

I. INTRODUCTION

OBOTIC soccer is currently one of the most popular

research domains in the area of multi-robot systems.

The RoboCup rules and regulations for different robotic

soccer modalities are widely accepted and followed. Many

robotic soccer projects use RoboCup competitions for

testing and validation of the adopted approaches.

In the context of RoboCup, the so-called “middle-size

league” (MSL) is one of the most challenging, since

robotic players must be completely autonomous and must

play in a field of 12 m × 18 m [13]. In this modality, teams

are composed of at most six wheeled robots with a

maximum height of 80 cm and a maximum weight of 40

Kg. The rules of this modality establish several constraints

to simplify perception and world modeling. In particular,

the ball is orange, the field is green, the field lines are

white, the players are black, etc. The duration of a game is

30 minutes, not including a half-time interval of 5 minutes.

The referee orders are communicated to the teams using an

application called “referee box”. The referee box sends the

referee orders to the team through a wired LAN TCP link

connected to the base station of each team. It is the team's

responsibility to communicate these orders to the robots

inside the field via standard wireless LAN. No human

interference is allowed during the games except for

removing malfunctioning robots and re-entering robots in

the game.

Building a team for the MSL is a very challenging task,

both at the hardware and software level. To be

competitive, robots must be robust and fast and possess a

comprehensive set of sensors. At the software level these

robots must have an efficient set of low-level behaviors

Nuno Lau and Luís Seabra Lopes are with the Transverse Activity on

Intelligent Robotics of IEETA research unit as well as with the

Department of Electronics, Telecommunications and Informatics,

Universidade de Aveiro, Portugal. (e-mails: { nunolau, lsl }@ua.pt).

Gustavo Corrente was a researcher with the Transverse Activity on

Intelligent Robotics of IEETA research unit, Universidade de Aveiro,

Portugal, and is currently with Nokia Siemens Networks Portugal,

Aveiro, Portugal. (e-mail: gustavo@ua.pt)

and must coordinate themselves to operate as a team.

Coordination in the MSL league is usually achieved

through the assignment of different roles to the robots.

Typically there is, at least, an attacker, a defender, a

supporter and a goalie [21][2]. As the maximum number of

robots in each team increases (it is currently 6) and the

field becomes larger, more sophisticated coordination

techniques must be developed.

In the RoboCup simulation league teams have been

using coordination schemes based on a coordination layer

that includes Strategy, Tactics and Formations [17][20],

coordination graphs [10] and reinforcement learning [19].

CAMBADA is the RoboCup middle-size league soccer

team of the University of Aveiro (Fig. 1). This project

started officially in October 2003 and was initially funded

by the Portuguese research foundation (FCT). Since then,

CAMBADA participated in several national and

international competitions, including RoboCup world

championships, the European "RoboLudens” and the

annual Portuguese Open Robotics Festival.

The CAMBADA project aims at fostering the Aveiro

university research at several levels of the MSL challenge.

Research conducted within this project has led to

developments at the hardware level [3], infrastructure level

[1][15][16], vision system [14][5], multi-agent monitoring

[9] and high-level decision and coordination [4]. This

paper is focused on the last of these components.

This paper is organized as follows: Section II presents

the hardware and software architectures of CAMBADA

players and provides details on the main software

components involved in individual decisions of the

players, namely roles and behaviors. Section III describes

how players share information with teammates and how

they integrate shared information. Section IV describes the

adopted coordination methodologies. Section V presents

the latest results and concludes the paper.

Fig. 1 CAMBADA robotic team

CAMBADA: Information Sharing and Team Coordination

Nuno Lau, Member, IEEE, Luís Seabra Lopes, Member, IEEE and Gustavo A. Corrente

R

Proc. Robotica'2008

978-972-96895-3-6

27

II. PLAYER ARCHITECTURE

A. Hardware Architecture

The CAMBADA robots (Fig. 1) were designed and

completely built in-house. The baseline for robot

construction is a cylindrical envelope, with 485 mm in

diameter. The mechanical structure of the players is

layered and modular. Each layer can easily be replaced by

an equivalent one. The components in the lower layer,

namely motors, wheels, batteries and an electromechanical

kicker, are attached to an aluminum plate placed 8 cm

above the floor. The second layer contains the control

electronics. The third layer contains a laptop computer, at

22.5 cm from the floor, and an omni-directional vision

system, close to the maximum height of 80cm. The players

are capable of holonomic motion, based on three omni-

directional roller wheels. The mentioned vision system

allows detecting objects (ball, players, goals) and field

lines on a radius of nearly 5m around each player. Besides

vision, each player includes wheel encoders, battery status

sensors and, for detecting if the ball is kickable, an infra-

red presence sensor.

The robots computing system architecture follows the

fine-grain distributed model [11] where most of the

elementary functions, e.g. closed loop control of complex

actuators, are encapsulated in small microcontroller based

nodes, connected through a network. A laptop node is used

to execute higher-level control functions and to facilitate

the interconnection of off-the-shelf devices, e.g. cameras,

through standard interfaces, e.g. USB or Firewire (Fig. 2).

For this purpose, Controller Area Network (CAN), a real-

time fieldbus typical in distributed embedded systems, has

been chosen. This network is complemented with a higher-

level transmission control protocol to enhance its real-time

performance, composability and fault-tolerance, namely

the FTT-CAN protocol (Flexible Time-Triggered

communication over CAN) [7].

In the middle-size league, inter-robot communication and

communication between the team’s base station and the

robots is extremely necessary for the team to maintain a

coordinated behavior. The communication among robots

and to the base station uses the standard wireless LAN

protocol IEEE 802.11x profiting from large availability of

complying equipment. The base station is connected to the

referee box through a wired LAN TCP link.

B. Software Architecture

The software system in each player is distributed among

the various computational units (Fig. 2). High-level

functions run on the computer, a laptop PC running Linux

operating system. Low-level functions run partly on

dedicated microcontrollers. A cooperative sensing

approach based on a Real-Time Database (RTDB) [1] has

been adopted. The RTDB is a data structure where players

share their world models. It is updated and replicated in all

players in real-time.

Fig. 3 shows the class diagram of the CAMBADA

WorldState class. This class supports the information

storage of ball and players positions, roles, behaviors, etc..

A module called Integrator is used to update the world

state information. This is done by filtering the raw

information coming from sensors (i.e. vision, odometry,

etc.) and determining the best estimate of the position and

velocity of each object. The World State class includes

several methods that test conditions on the current situation

(ex: if the robot is facing the opposite goal).

Vision

Wireless

Comunication

RTDB

Sensorial

interpretation
Intelligence

and
Coordination

Low-level

communication
handler

Motion Odometry

Kick System monitor

Fig. 2. Layered software architecture of CAMBADA players, from [3]

A recent, and very important, development as been the

integration into the sensor fusion module of a self-

localization lines based engine, based on the one described

in [12], that allows a high level of confidence in the robots

estimated self position.

The high-level processing loop starts by integrating

perception information gathered locally by the player. This

includes information coming from the vision processes,

which is stored in a Local Area of the RTDB, and

odometry information coming from the holonomic base via

FTT-CAN. After integration, part of the world state is

written in the shared area of the RTDB to make it available

to teammates. The next step is to integrate local

information with information shared by teammates.

Fig. 3. WorldState class diagram

The software of the CAMBADA agent is composed of

several different processes that have responsibility for

different tasks: image acquisition, image analysis,

integration/decision and communication with the low-level

28

Proc. Robotica'2008

978-972-96895-3-6

modules. The order and schedule of activation of these

processes is performed by a processor manager library

called Pman [16]. Pman stores in a database the

characteristics of each process to activate and allows the

activation of recurrent tasks, settling phase control

(through the definition of temporal offsets), precedence

restrictions, priorities, etc. The pman services allow

changes in the temporal characteristics of the process

schedule during run-time.

It is very important that all robots share the same play

mode obtained by processing the referee orders given

through the referee box. In CAMBADA, an application

inside the team’s base station checks the messages

received from the “referee box”, and converts the event

triggered protocol of communication “referee box” - “base

station” to a state oriented playmode information that is

broadcasted to robots using the RTDB. This ensures that

the delay between the reception of a referee event from the

“referee box” and its awareness by all robots is minimized,

enabling a synchronized collective behavior.

C. Roles and Behaviors

The CAMBADA agent decision module is based on the

concepts of role and behavior. Behaviors are the basic

sensorimotor skills of the robot, like moving to a specific

position or kicking the ball, while roles select the active

behavior at each time step.

All roles within a CAMBADA agent are derived from

the Role abstract class (Fig. 4), whose most important

element is the determineNextState() method. This method

is responsible for the selection of the active behavior. To

develop a new role, a Role derived class is created and the

determineNextState() method is implemented. The run()

method is implemented only in the base class and is

responsible for the selection of the active behavior, using

determineNextState(), and for its execution.

To change the active behavior, the method

changeBehaviour(Behaviour*), implemented in the Role

base class, is used.

During play-on mode, the CAMBADA agents use only

three roles: RoleStriker, RoleMidfielder and RoleGoalie.

The RoleGoalie is activated for the goalkeeper.

RoleStriker is an “active player” role. It tries to catch the

ball and score goals according to the finite-state machine

shown in Fig. 5. The striker activates several behaviors

that try to engage the ball (MoveToBall,

MoveOutsideBall), get into the opponent’s

side avoiding obstacles (Dribble) and shoot

to the goal (Kick). The Kick behavior can

perform 180º turns while keeping possession

of the ball. The MoveOutsideBall is used in

situations where a direct catch would lead to

the ball getting out of the field. In these

situations the robot approaches the ball from

the exterior side of the field thus pushing it

inside.

RoleMidfielder is a “passive” player. It

moves according to its determined strategic

positioning [18]. The strategic position is

determined for each positioning using a home position and

then adjusting it using attractions to the ball current

position. Using different home positions and attractions

according to the positioning allows a simple definition of

defensive, wing, midfielders and attack strategic movement

models.

��������		 ����
��
�����		

���� ��������

�����	�

�
���		������

����	���
�

����		���
��	���

����	
��� ��������

����		����������

����		�������	��� ����		�������
��	���

����		��������������

Fig. 5. Finite-state machine for decision-making in RoleStriker

Three more roles are used in set-pieces like kick-off,

throw-in, goal-kick, corner-kick, free-kick and penalty.

RoleToucher and RoleReplacer are used to overcome the

indirect rule in the case of indirect set pieces. The purpose

of RoleToucher is to touch the ball and leave it to the

RoleReplacer player. The replacer handles the ball only

after it has been touched by the toucher. This scheme

allows the replacer to score a direct goal if the opportunity

appears. RoleBarrier is used during the set-pieces against

CAMBADA to protect the goal from a direct shoot.

RolePenalty is used in penalty shootouts. It randomly

chooses the goal side to which to kick and kicks the ball so

that it enters the goal at 0.75m height.

The class diagram of behaviors is shown in Fig. 6. The

abstract class Behavior is the base of all behaviors. It has

three important methods. The first one is calculate(), an

abstract method, whose implementation in derived classes

determines which are the parameters of the command that

this behavior intends to execute (velX, velY, velA,

grabberInfo and kickerInfo) but does not execute them.

The second is execute(), which sends previously computed

linear, angular velocities and the kicking parameters to the

low level computation modules. The separation of

Fig. 4. Role class diagram

Proc. Robotica'2008

978-972-96895-3-6

29

calculation and execution enables the agent to reason on

the expected result of the commands while deciding which

one to execute. Finally, grabberControll() controls the

grabber mechanism automatically, without concerns for the

behaviors developments.

The set of behaviors that are implemented in the

CAMBADA agent are adapted to its catadioptric

omnidirectional vision and holonomic driving systems.

The combination of these technologies enhances the set of

possible behaviors when compared to a differential drive

robot or to an holonomic drive robot with a limited field of

view.

The behavior Move uses two symbolic parameters: the

target position where to move; and the position which the

CAMBADA player should be facing in its path to the

target. The symbols used are OBall, TheirGoal and

OurGoal. The other moving behavior MoveToAbs allows

the movement of the player to an absolute position in the

game field. Those moving behaviors may activate the

functions of avoiding obstacles and avoiding the ball (used

during the game repositions to avoid collisions with the

ball). The Dribble behavior is used to dribble the ball to a

given relative player direction. GoalieDefend is the main

behavior of the goalie. The Kick behavior is used to kick

the ball accurately to one 3D position in opponent goal.

III. INFORMATION SHARING AND INTEGRATION

Sharing perceptional information in a team can improve

the accuracy of world models. Sharing internal state can

improve the team coordination. Therefore, information

sharing and integration is one of the key aspects in multi-

robot teams.

In CAMBADA, each robot uses some of the perceptions

of the other robots, obtained through the RTDB, to

improve its knowledge about the current positions and

velocities of the others robots and of the ball. It is very

important for our coordination model to keep an accurate

estimation of the absolute position of the ball by each

robot. The role assignment algorithm is based on the

absolute positions of the robot and its teammates. The

teammates’ positions are not obtained through the vision

system and rely completely on the communicated

estimated self positions of others.

Each agent communicates its own absolute position and

velocity to all teammates as well as its ball information

(position, velocity, visibility and engagement in robot),

current role and current behavior is also shared.

The sharing of own absolute position and velocity

is needed first of all because the vision system of the

agents currently cannot detect the localization of the

teammates. The vision system only detects obstacles

but it doesn’t try to detect individual robots within

the detected obstacles nor does it try to determine if

they are teammates or opponents. The absolute

position of teammates is necessary to the strategy of

our team, as the information is used to define our

formation/strategy. So each robot trusts the

estimated self position of teammates that is

communicated through the RTDB.

Multi-robot ball position integration has been used in

the middle-size league by several teams [21][6]. In

CAMBADA, multi-robot ball position integration is used

to maintain an updated estimate of the ball position, when

the vision subsystem cannot detect the ball, and to validate

robot's own ball position estimate, when the vision

subsystem detects a ball.

(a) (b)

Fig. 7. Multi-robot ball position integration

Currently, a simple integration algorithm is used. When

the agent doesn’t see the ball, it analyzes the ball

information of playing teammates. The analysis consists in

the calculation of the mean and standard deviation of the

ball positions, then discarding the values considered as

outliers of ball position, and finally using the ball

information of the teammate that has a shorter distance to

ball. To determine if the agent sees a fake ball, i.e., to

validate the robot's own perception, we use a similar

algorithm.

Communication is also used to convey the coordination

status of each robot allowing robots to detect

uncoordinated behavior, for example, several robots with

the same exclusive role, and to correct this situation

reinforcing the reliability of coordination algorithms.

The communication between the base station and the

robots informs the robots of the active playmode (decided

by the referee). In some of the used setups, a coach agent,

also possibly running in the base station, decides robot's

roles and communicates its decisions to the robots using

the RTDB. During development the base station can be

used to control several robotic agent characteristics like

fixed roles, fixed behaviors, manually activated self-

Fig. 6. Behavior class diagram

30

Proc. Robotica'2008

978-972-96895-3-6

positioning, etc, all managed through the RTDB.

IV. TEAM COORDINATION

Our coordination model is based on the definition of a

strategy for a game, where each strategy may be composed

of several tactics and each tactic defines a formation to be

used at each situation in a similar way as SBSP strategies

previously developed for the RoboCup Simulation League

[18]. However several changes had to be introduced in

order to adapt the coordination model to the specificities of

the Middle-Size League. This model is merged with role

based coordination and different priorities are assigned to

the different roles and positionings. In specific situations,

like kick ins, or corners, specific set-plays are activated

where a coordinated and synchronized set of basic

behaviors is performed by all robots in the team.

A. Strategy of Role based strategic positioning

Each tactic is a complete specification of the team

coordinated behavior for all situations. A formation

defines the movement model of the set of all robots which

assigns to each positioning a home position and

corresponding attractions to the ball. All these items are

maintained in a strategy configuration file, to enable

flexible alterations to the current strategy. To maintain a

correct formation all robots should have estimations of the

ball absolute position that are close to each other. Fig. 8

shows the formation of the team used in Robótica 2007

Tournament [8] for several ball positions.

The Striker is helped by other teammates as they

maintain their strategic positioning and accompany the

striker, without interfering with him, as it plays along the

field. In case the ball is captured by the opponent the other

mates are in good positions to become the new strikers.

Fig. 8. Strategic positions for several different ball position

B. Role/Positioning assignment algorithm

So far, several different roles have been described but

coordination must ensure a proper and safe role

assignment algorithm. This algorithm should be able to

function with a varying number of active players in the

team, either because of hardware or software

malfunctioning or because of referee orders. These are

very common situations in the MSL.

The playon decision that assigns the Striker role and the

positionings of the other robots in the formation is

performed using an algorithm similar to DPRE [17], but

with the innovation of considering different priorities for

the different roles and positionings, so that the most

important ones are always covered as the number of active

players varies.

The algorithm is presented in Fig. 9. Considering a team

of R field players (not counting the goal-keeper which has

a different mechanical configuration and therefore a fixed

role), to assign the role and positioning to each robot, the

distances of all robots to all strategic positions are

calculated. Then the Striker role is assigned to the robot

that is closest to the highest priority strategic position,

which is in turn the closest to the ball. From the remaining

R-1 robots the closest to the defensive positioning (second

highest priority) is assigned to this positioning, then the

closest to the third level priority positioning is assigned

next and the algorithm continues until all active robots

have positionings and roles assigned. This algorithm

results in the Striker role having top priority, followed by

the defensive positioning, followed by the other supporter

positionings. The assignment algorithm may be performed

by the coach agent in the base station, assuring a

coordinated assignment result, or locally by each robot, in

which case the inconsistencies of world models may lead

to unsynchronized assignments.

MSL_DPRE(robotPositions, ballPosition,

 formation)

clear assignments

determine strategicPositions[N_POSITIONS]

determine distSP[N_POSITIONS][N_ROBOTS]

for each SPos sorted by priority

 determine closest free Agent to SPos

 assign SPos to Agent

Return assignments

Fig. 9. CAMBADA Positioning/Role assignment algorithm

C. Set plays

One other coordination methodology that is being used

in CAMBADA is the use of predefined set plays. Currently

set plays are only initiated when re-entering the play-on

mode. Set plays define a sequence of behaviors for several

robots in a coordinated way. Each of the tasks that

compose a set play are implemented using a special role.

These roles are activated at the specific situation: kick-off,

kick in, corners, free kicks and goal kicks.

The assignment of the Barrier, Replacer and Toucher

roles is executed by sorting the agents according to their

perceived distances to the ball and selecting the closest

ones, up to the maximum number of agents in each role.

When selecting a role like the Replacer, which is

exclusive, the agent looks at the other teammates role

decisions and if it finds a Replacer with a lower uniform

number it will never select the Replacer role. A similar

approach is performed for the other roles. This assignment

is always performed locally by each robot.

Proc. Robotica'2008

978-972-96895-3-6

31

V. CONCLUSION

The data structures used for world state representation

clearly separate the raw sensor information from the world

model that results of integrating local and shared

information. This architecture is easily adaptable to the

addition of new sensors. Access to the world model is

performed by using specific queries.

The adaptation of SBSP and DPRE [17][18] to the

Middle-Size League environment resulted in a coordinated

behavior of the team that contributed to its recent

successes. The formation flexibility and adaptability was

one of the components presented by CAMBADA in the 2
nd

Technical Challenge of RoboCup 2007 (based on

Challenge 6 of [13]), Atlanta, where the team ranked in the

4
th

 place. The robot malfunctions decrease the number of

field players, but the positioning/role assignment algorithm

maintains a competitive formation with fewer players in

the field. Set plays were very efficient as several of the

CAMBADA goals were the direct result of their activation.

The work described in this paper was used in two

RoboCup competitions:

a. Portuguese Robotics Open 2007 (Portugal): 1st place,

6 wins, 0 draws, 0 looses, 16 goals scored and 3 goals

suffered;

b. RoboCup2007 (USA): 5th place, 7 wins, 1 draws, 1

looses, 24 goals scored and 7 goals suffered.

ACKNOWLEDGMENT

The authors and the other CAMBADA team members

thank Stefen Welker (Tribots team member) for the

supplied material on the localization module, it was very

useful to improve our team. Part of this work was funded

through a research scholarship granted by IEETA.

REFERENCES

[1] Almeida, L., F. Santos, T. Facchinetti, P. Pedreira, V. Silva and L.

Seabra Lopes, Coordinating Distributed Autonomous Agents with a

Real-Time Database: The CAMBADA Project, Computer and

Information Sciences -- ISCIS 2004: 19th International

Symposium, Proceedings, Aykanat, Cevdet; Dayar, Tugrul;

Korpeoglu, Ibrahim, eds., Lecture Notes in Computer Science, Vol.

3280, 2004, pp. 876-886.

[2] M. Arbatzat, S. Freitag, M. Fricke, R. Hafner, C. Heermann, K.

Hegelich, A. Krause, J. Krüger, M. Lauer, M. Lewandowski, A.

Merke, H. Müller, M. Riedmiller, J. Schanko, M. Schulte-Hobein,

M. Theile, S. Welker, D. Withopf: Creating a Robot Soccer Team

from Scratch: the Brainstormers Tribots, Proceedings of Robocup

2003, Padua, Italy, 2003.

[3] Azevedo, J.L., M.B. Cunha, L. Almeida, Hierarchical Distributed

Architectures for Autonomous Mobile Robots: a Case Study. Proc.

ETFA2007- 12th IEEE Conference on Emerging Technologies and

Factory Automation, Patras, Greece, 2007, pp. 973-980.

[4] Bartolomeu, P., L. Seabra Lopes, N. Lau, A. Pinho, L. Almeida,

Integração de Informação na Equipa de Futebol Robótico

CAMBADA, Electrónica e Telecomunicações, 4 (4), Universidade

de Aveiro, Portugal, 2005, pp. 467-477.

[5] Cunha, B., J. Azevedo, N. Lau, L. Almeida, Obtaining the Inverse

Distance Map from a Non-SVP Hyperbolic Catadioptric Robotic

Vision System, U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert,

editors, RoboCup-2007: Robot Soccer World Cup XI, LNAI,

Springer Verlag, Berlin, 2008.

[6] Ferrein, A., L. Hermanns and G. Lakemeyer, Comparing Sensor

Fusion Techniques for Ball Position Estimation, RoboCup 2005:

Robot Soccer World Cup IX, A. Bredenfeld, A. Jacoff, I. Noda and

Y. Takahashi, eds., Lecture Notes in Computer Science, 4020,

Springer, 2006, pp. 154-165.

[7] Ferreira, J.; Pedreiras, P.; Almeida, L.; Fonseca, J.A. The FTT-

CAN protocol for flexibility in safety-critical systems, IEEE Micro,

22 (4), 2002, pp. 46-55.

[8] Festival Nacional de Robótica’2007, Paderne, Portugal,

http://www.ccvalg.pt/robotica2007/, 2007

[9] Figueiredo, J., Lau, N., Pereira, A. Multi-Agent Debugging and

monitoring framework, Proc. First IFAC Workshop on

Multivehicle Systems (MVS'06), Brasil, October, 2006.

[10] Kok, J.; Spaan, M. and Vlassis, N., Non-communicative multi-

robot coordination in dynamic environments. Robotics and

Autonomous Systems, 50 (2-3), Elsevier Science, 2005, pp. 99-114.

[11] Kopetz, H., Real-Time Systems Design Principles for Distributed

Embedded Applications, Kluwer, 1997.

[12] Lauer, M., S. Lange and M. Riedmiller, Calculating the perfect

match: An efficient and accurate approach for robot self-

localisation, RoboCup 2005: Robot Soccer World Cup IX, A.

Bredenfeld, A. Jacoff, I. Noda and Y. Takahashi, eds., LNCS 4020,

Springer, 2006.

[13] MSL Technical Committee 1997-2008, Middle Size Robot League

Rules and Regulations for 2008. Draft Version - 12.2 20071109,

November 9, 2007.

[14] Neves, A.; Corrente, G. and Pinho A., An omnidirectional vision

system for soccer robots. Progress in Artificial Intelligence,

Lecture Notes in Computer Science. Berlin, nº 4874, Springer,

2007, pp. 499-507.

[15] Pedreiras, P., F. Teixeira, N. Ferreira, L. Almeida, A. Pinho, F.

Santos, Enhancing the reactivity of the vision subsystem in

autonomous mobile robots using real-time techniques, RoboCup-

2005: Robot Soccer World Cup IX, I. Noda, A. Jacoff, A.

Bredenfeld, and Y. Takahashi, eds., Lecture Notes in Computer

Science, 4020, Springer, Berlin, 2006, pp. 371-383.

[16] Pedreiras, P.; Almeida, L., Task Management for Soft Real-Time

Applications Based on General Purpose Operating Systems,

Robotic Soccer, edited by: Pedro Lima, Itech Education and

Publishing, Vienna, Austria, 2007, pp. 598-607.

[17] Reis, L.P. and N. Lau, FC Portugal Team Description: RoboCup

2000 Simulation League Champion, RoboCup-2000: Robot Soccer

World Cup IV, P. Stone, et al. eds., LNCS 2019, Springer, 2001,

pp. 29-40.

[18] Reis, L.P. and N. Lau, and E.C. Oliveira, Situation Based Strategic

Positioning for Coordinating a Team of Homogeneous Agents,

Balancing Reactivity and Social Deliberation in Multiagent

Sytems: From RoboCup to Real Word Applications, M.

Hannenbauer, J. Wendler, and E. Pagello eds., LNAI 2103,

Springer-Verlag, 2001, pp. 175-197.

[19] Riedmiller, M. Gabel, T., On Experiences in a Complex and

Competitive Gaming Domain: Reinforcement Learning Meets

RoboCup, Proceedings of the 3rd IEEE Symposium on

Computational Intelligence and Games (CIG 2007). IEEE Press,

April 2007, pp. 17-23.

[20] Stone, P. and M. Veloso, Task Decomposition, Dynamic Role

Assignment and Low Bandwidth Communication for Real Time

Strategic Teamwork, Artificial Intelligence, vol. 110 (2), 1999, pp.

241-273.

[21] Weigel, T. W. Auerbach, M. Dietl, B. Dümler, J.S. Gutmann, K.

Marko, K. Müller, B. Nebel, B. Szerbakowski and M. Thiel, CS

Freiburg: Doing the Right Thing in a Group, RoboCup 2000: Robot

Soccer World Cup IV, P. Stone, G. Kraetzschmar, T. Balch, eds.,

Springer-Verlag, 2001, pp. 52-63.

32

Proc. Robotica'2008

978-972-96895-3-6

