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resumo CAMBADA é a equipa de futebol robótico da Liga de Robôs Médios da Univer-
sidade de Aveiro. Esta equipa foi desenvolvida pelo grupo de investigação de
Actividade Transversal de Robótica Inteligente (ATRI), pertencente ao Instituto
de Electrónica e Investigação da Universidade de Aveiro (IEETA)).

Este trabalho pretende especificar e implementar uma arquitectura de con-
trolo e coordenação para os robôs CAMBADA. Esta arquitectura é baseada
em comportamentos sendo estes utilizados nos papéis de guarda-redes, de
médio e de atacante. Este papéis permitiram um evolução do desempenho
da equipa CAMBADA nas competições nacionais e internacionais. Foi desen-
volvido ainda um mecanismo de posicionamento estratégico, baseado no Situ-
ation Based Strategic Positioning (SBSP) com Dynamic Positioning and Role
Exchange (DPRE) da equipa FCPortugal, permitindo maximizar a distribuição
dos agente pelo campo. Um treinador, foi implementado com o objectivo de
definir as várias posições estratégicas dos agentes CAMBADA.

Este trabalho foi implementado e avaliado ao longo de várias competições na-
cionais (Robótica 2006, Robótica 2007 e Robótica 2008) e internacionais (Ro-
boCup 2006, RoboCup 2007 e RoboCup 2008). Destas participações é de
salientar a vitória em dois campeonatos nacionais, o quinto lugar no RoboCup
2007 e a vitória no RoboCup 2008, campeonato do mundo que decorreu em
Suzhou, China.





keywords RoboCup, Robotics, Multi-agent Systems, Coordination, Cooperation

abstract CAMBADA is a Middle Size League robotic soccer Team from University of
Aveiro. This team was developed by ATRI research Group from IEETA.

This work pretends to design and implement an architecture of control and co-
ordination for CAMBADA robots. This architecture is based in behaviors, was
them used in roles goal-keeper, midfielder and striker. Those roles allowed
an evolution in national and international competitions performance. A strate-
gic positioning was developed based on FCPortugal, Situation Based Strategic
Positioning (SBSP) with Dynamic Positioning and Role Exchange (DPRE), ma-
ximizing the agent distribution in the field. One coach was developed with the
objective to define severals strategic positionings of CAMBADA agents.

This work was implemented and evaluated along severals national (Robótica
2006, Robótica 2007 and Robótica 2008) and international (RoboCup 2006,
RoboCup 2007 and RoboCup 2008) competitions. In those competitions is to
acclaim the two victories in national competition, the 5th place in RoboCup 2005
and the victory in the RoboCup 2008, world championship placed in Suzhou,
China.
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Capı́tulo 1

Introdução

1.1 Enquadramento e Motivação

CAMBADA 1 é a equipa de futebol robótico da Universidade de Aveiro na Liga de Robôs Médios
do RoboCup2. Este projecto começou em 2003, contando com a participação de investigadores
do grupo de Actividade Transversal em Robótica Inteligente (ATRI), do Instituto de Engenharia
Electrónica e Telemática de Aveiro (IEETA). Os contributos deste grupo incidiram nas áreas de
mecânica, electrónica, visão por computador e inteligência artificial.

A equipa CAMBADA participou em vários torneios nacionais e internacionais. Desde 2006, a equipa
demonstrou um progresso assinalável no seu desempenho o que lhe permitiu alcançar o 1º lugar no
Robótica 2007 e 2008, o 5º lugar no RoboCup 2007 e por último, o 1º lugar no RoboCup 2008 em
Suzhou, China.

A equipa CAMBADA é composta por seis robôs que têm como principal objectivo jogar futebol.
Este objectivo é complexo devido à complexidade das tarefas e do ambiente dinâmico onde este ac-
tuam. Naturalmente, surge a necessidade de desenvolver uma arquitectura de coordenação e controlo
para estes agentes. Esta arquitectura deverá dotá-los de comportamentos individuais e fornecer-lhes
mecanismos de coordenação.

1.2 Objectivos

O objectivo desta dissertação é a especificação e implementação da arquitectura de controlo do agente
CAMBADA, o desenvolvimento e teste sobre essa arquitectura de alguns comportamento essenciais,
tais como, o move, dribble e kick, e a definição e implementação de modelos de coordenação, em 2
situações, agentes com capacidade de auto-localização e agentes sem capacidade de auto-localização.

Esta arquitectura deverá ser modular e flexı́vel de modo a permitir uma evolução da equipa. Esta
evolução permitirá o desenvolvimento de novos comportamentos e papéis.

1Cooperative Autonomous Mobile roBots with Advanced Distributed Architecture
2http://www.robocup.org
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1.3 RoboCup

O RoboCup [1] é uma entidade sem fins lucrativos, que tem como objectivo principal promover o
desenvolvimento da inteligência artificial, robótica e áreas relacionadas. O RoboCup é composto por
um Presidente, um conjunto de Trustees, um comité executivo e por comités técnicos de cada uma das
ligas.

O principal objectivo a longo prazo é: ”No ano de 2050, uma equipa de robôs autónomos humanóides,
ser capaz de vencer a equipa campeã do mundo de futebol, num encontro disputado de acordo com
as regras da FIFA”.

Para cumprir o objectivo o RoboCup promove competições e conferências. Assim, pode separar-se as
competições do RoboCup nas seguintes categorias:

1. RoboCupSoccer

(a) Simulation Leagues: 2d, 3d, 3d development, mixed reality

(b) Small Size League

(c) Middle Size League

(d) Four-Legged League

(e) Standard Platform League

(f) Humanoid Leagues: kid-size, teen-size

2. RoboCupRescue

(a) Rescue Simulation League

(b) Rescue Robot League

3. RoboCup@Home

4. RoboCupJunior

(a) Soccer Challenge

(b) Rescue Challenge

(c) Dance Challenge

1.3.1 Middle Size League (MSL)

Na MSL cada equipa é composta por um máximo de seis robôs, cujo tamanho não pode exceder 50x50
cm (na base), 80 cm de altura e 40Kg de peso. Estes robôs devem jogar futebol autonomamente,
segundo as regras [2] do RoboCup as quais se baseiam nas regras oficiais da FIFA. O ambiente de
actuação é composto por um campo verde (18x12 metros), com linhas brancas. Os corpo dos robôs
deverá ser preto e a bola laranja. Cada jogo é disputado em duas partes de 15 minutos.

Durante o desenvolvimento do trabalho desta dissertação as regras sofreram duas grandes alterações.
A primeira alteração foi o aumento das dimensões do campo de 12x8 metros para 18x12 metros. A
outra grande alteração foi a eliminação da côr amarela e azul das balizas. Actualmente, as balizas são
exactamente iguais sem nenhuma côr que as permita distinguir uma da outra.

2



Figura 1.1: Jogo de futebol robótico – final do RoboCup 2008

1.4 Estrutura da dissertação

Esta dissertação está organizada em seis capı́tulos. O capı́tulo 2 descreve alguns conceitos necessários
para o enquadramento do trabalho desenvolvido, tais como a definição de agente, do ambiente de
actuação, da forma fı́sica dos robôs, dos tipos de agentes e da análise de duas equipas chave da MSL.
Estes conceitos foram utilizados aquando da especificação e do desenvolvimento da arquitectura e dos
mecanismos de coordenação da equipa CAMBADA.

O capı́tulo 3 permite visualizar a estrutura fı́sica dos robôs CAMBADA. Esta estrutura fı́sica é com-
posta por quatro camadas: mecânica, sensorial, de actuação e unidade computacional. Neste capı́tulo
também se apresenta as várias evoluções da estrutura fı́sica ao longo do tempo.

No capı́tulo 4 descreve-se as especificações da arquitectura de software e do agente CAMBADA,
também é apresentada a gestão de informação utilizada.

O capı́tulo 5 descreve os mecanismos de coordenação utilizados pela equipa CAMBADA. Neste
capı́tulo apresenta-se a evolução dos mecanismos de coordenação ao longo do tempo. Face à evolução
do sistema de visão para um visão omni-direccional, foi necessário alterar os mecanismos de coordenação
do agente CAMBADA.

O capı́tulo 6 apresenta os resultados obtidos no âmbito desta dissertação. Os resultados podem
dividir-se em publicações obtidas, resultados de competições e avaliação prática da arquitectura e
da coordenação da equipa CAMBADA. Neste capı́tulo, ainda são apresentadas algumas perspectivas
de trabalho futuro, com objectivo de suprimir algumas lacunas da equipa por forma a que esta continue
no topo das equipas da MSL.
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Capı́tulo 2

Estado da Arte: Agentes e arquitecturas
baseadas em comportamentos

Agente, segundo Stuart Russel and Peter Norvig [3], é uma entidade com capacidade de obter percepções
(através de sensores) do ambiente de actuação e de executar acções (através dos actuadores) em função
da informação obtida a partir das percepções. Um agente é composto por uma arquitectura que en-
globa os sensores e actuadores e por um programa. Cabe a este programa processar as percepções
recolhidas pelos sensores e gerar comandos que vão ser executados pelos actuadores.

O trabalho da Inteligência Artificial é definir o melhor programa (software do agente) possı́vel para
executar as melhores acções com a percepção do mundo recolhida, de modo a cumprir os objectivos
da melhor forma possı́vel.

2.1 Caracterização do ambiente de actuação (estado do mundo)

O ambiente de actuação pode influenciar a arquitectura do agente visto que cada ambiente pode ter
caracterı́sticas muito particulares. Uma dessas caracterı́sticas é a possibilidade do ambiente ser par-
cialmente ou completamente observável. Num ambiente completamente observável é mais fácil
planear as acções a tomar pois tem-se um conhecimento completo a cada nova observação. Pode-se
afirmar que se tem uma percepção total do mundo, ou seja, tem-se uma relação de um para um entre a
informação recolhida pelos sensores e o nosso estado do mundo. Não é necessário agregar vários tipos
informação de modo a gerar outros tipo de informação, só porque não se recebeu nesta observação.
Num ambiente parcialmente observável não se tem acesso a toda informação do ambiente. Este
facto leva à necessidade de manter uma história/memória da informação que vai chegando através
dos sensores. Esta história/memória permite manter mais informação a cada instante, pois vai-se
agregando toda a informação nova que chega de observação em observação, de modo a melhorar as
acções enviadas para os actuadores.

O ambiente pode ser considerado estático ou dinâmico. Quando o agente está a processar a informação
observada e ela não se altera, estamos perante um ambiente estático. No caso do ambiente se alterar,
enquanto o agente está a processar a informação, estamos perante um ambiente dinâmico. Alguns
autores caracterizam o ambiente também como semi-dinâmico. O ambiente semi-dinâmico é um am-
biente que não se altera durante o processamento da informação por parte do agente, mas esse tempo

5



Ambiente Observação Estático Discreto Sequencial agente
Xadrez Completa Estático Discreto Sequencial multi

Xadrez com relógio Completa Semi-estático Discreto Sequencial multi
Resolver um puzzle Completa Estático Discreto Sequencial mono

Controlador Completa Dinâmico Contı́nuo Sequencial mono
RoboCup Parcial Dinâmico Contı́nuo Sequencial multi

Tabela 2.1: Comparação de caracterı́sticas de vários ambientes

de processamento influencia directamente o desempenho das acções tomadas que serão enviadas para
os actuadores.

O número de estados que o ambiente pode ter, é outra caracterı́stica importante. Quando o ambiente
tem um número finito de estados possı́veis, diz-se que é um ambiente discreto. No caso do ambiente
tem um número infinito de estados, considera-se que é um ambiente contı́nuo.

Uma caracterı́stica que importa referir é o facto do ambiente poder ser sequencial ou por acontecimen-
tos. Num ambiente sequencial, cada ciclo de percepção/processamento/acção influencia o próximo
ciclo. Já num ambiente baseado em acontecimentos/episódios qualquer que seja a acção tomada,
não influencia o próximo ciclo.

O ambiente de actuação pode ser caracterizado pelo número de agentes. Assim sendo, pode-se dizer
que o ambiente é mono agente (single agent) ou multi agente. Num ambiente mono agente existe
apenas um agente a actuar sobre o mundo. Já num ambiente multi agente temos mais de dois agentes
a actuar sobre o mundo. Num ambiente multi agente, os vários agentes podem competir entre si ou
cooperar entre si.

O ambiente de actuação dos robôs futebolistas da MSL é um ambiente muito complexo, como se pode
visualizar na tabela 2.1. Esta complexidade deve-se ao facto do ambiente ser parcialmente observável,
com multi agentes que cooperam entre si (os robôs da mesma equipa) e competem entre si (os robôs
adversários). Como o ambiente é o mundo real, é um ambiente contı́nuo e dinâmico.

2.2 Estrutura Fı́sica

Um agente não tem de ter necessariamente uma estrutura fı́sica/mecânica. Contudo, como este es-
tudo se enquadra no âmbito do RoboCup, mais em concreto na MSL, na secção 2.2.1 pretende-se
caracterizar a parte fı́sica dos robôs usados nesta liga.

2.2.1 Forma

As equipas do futebol robótico na MSL apresentam as mais diversas formas nos seus robôs, podendo
os mesmo ter a forma triangular, quadrada, circular ou mesmo hexagonal.

Triangular / Quadrada

Na figura 2.1 visualiza-se dois exemplo de robôs com forma triangular [4–6], já na figura 2.2 pode
visualizar-se dois robôs com forma quadrada [7]. Estas duas formas de robôs têm como principal
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(a) Robô da Equipa Tribots (b) Robô da equipa TechUnited

Figura 2.1: Exemplos de robôs de forma triangular

vantagem, permitir tocar/controlar a bola com qualquer uma das faces. A principal desvantagem que
esta forma apresenta é a sua orientação poder ser influenciada caso um robô adversário lhe toque num
dos vértices. Esta situação pode ocorrer quando o robô conduz a bola ou no momento de remate.
Outra desvantagem, é quando numa situação de disputa de bola, o robô com estas duas formas não
conseguem rodar, o que os impede de a disputar nas melhores condições.

Circular

A forma circular foi a forma adoptada pelas equipas portuguesas, CAMBADA e MINHO1. A principal
vantagem deste tipo de solução é o robô poder rodar sobre si próprio, mesmo que esteja rodeado por
outros robôs. A principal desvantagem é não poder tocar/dominar a bola com qualquer ponto do ser
corpo, de uma forma precisa e exacta.

1http://www.robotica.dei.uminho.pt/robocup
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(a) Robô da equipa Eigen (b) Robô da equipa TKU

Figura 2.2: Exemplos de robôs de forma quadrada

2.2.2 Sensores

Visão

As câmaras são utilizadas por todas as equipas como sensores principais. Uma visão omni-direccional
é conseguida através de um sistema catadióptrico [8]. Este tipo de sistema é composto por um espelho
cónico (hiperbólico ou parabólico) e por uma câmara, como se pode ver na figura 2.4(a). Existem
equipas que preferem não usar um sistema catadióptrico. Estas usam apenas câmaras [9, 10] que
olham directamente para o ambiente. Com o objectivo de recolher o máximo de informação possı́vel,
neste tipo de solução é normal utilizar-se mais do que uma câmara, sem estar fixa, permitindo olhar
para vários locais (ver figura 2.4(b)).

Orientação

A bússola electrónica é um sensor de orientação que é utilizado por algumas equipas como, por
exemplo, as equipas CAMBADA e TechUnited [5, 11]. A necessidade do uso deste sensor surgiu
devido ao desaparecimento das cores das balizas. O uso deste sensor é útil para desambiguar aquando
da auto-localização no campo de jogo.
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(a) Robô da equipa CAMBADA (b) Robô da equipa MINHO

Figura 2.3: Exemplos de robôs de forma circular

Sensor de barreira

Sensor de barreira é um sensor (ver figura 2.5) utilizado pelas equipas CAMBADA [11] e MINHO.
Este sensor permite detectar quando é que a bola está encaixada na frente do robô.

2.2.3 Actuadores

Os robôs da MSL apresentam vários tipos actuadores: sistema de tracção/motores, sistema defesa do
guarda-redes e os dispositivos para reter e chutar a bola.

Sistema de tracção/motores

Os motores são os principais actuadores, pois permitem o deslocamento dos robôs. Os sistemas de
tracção podem dividir-se em dois grupos: os holonómicos e os diferenciais.

O sistema de tracção holonómico permite que o robô se movimente para qualquer direcção com qual-
quer orientação. Para implementar este tipo de sistema são utilizados vários tipos de configurações.
A primeira configuração, e a mais usada, é de três motores a 120o [4, 11, 12], usando rodas omni-
direccionais como se pode ver na figura 2.6. A segunda configuração é a utilização de quatro moto-
res/rodas dispostas a 90o.
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(a) Sistema de visão catadióptrico (b) Sistema de Visão não catadioptrico

Figura 2.4: Exemplos de dois sistema de visão

Figura 2.5: Sensor de Barreira.

Figura 2.6: Exemplo de um Sistema holonónico com três motores e rodas omni-direccionais

Dispositivo de retenção de bola

Os dispositivos para retenção de bola dividem-se em 2 grupos, os dispositivos passivos e os dispositi-
vos activos.

10



Nos dispositivos passivos a implementação mais comum é o uso de uns ”dedos” que podem ser de
esponja to de borracha. Estes ”dedos” têm como objectivo amortecer a bola aquando a sua recepção e
permitir também guiar a bola durante a sua condução.

Os dispositivos activos de retenção de bola [5], como o próprio nome indica, têm um mecanismo
activo que permite controlar a bola. Este mecanismo normalmente é implementado usando um motor
e um roda. Na figura 2.7 pode-se visualizar dois exemplos de sistemas activos de retenção de bola.

(a) Equipa CAMBADA (b) Equipa TechUnited

Figura 2.7: Exemplo de dois sistemas activos de retenção de bola

Dispositivo de chuto

Este dispositivo é um dos mais importantes, pois vai permitir chutar a bola e consequentemente marcar
golos. Existem três tipos de dispositivos de chuto: os electromagnéticos [5], os hidráulicos e os
baseados em mola [13].

Os dispositivos de chuto electromagnéticos e hidráulicos têm como principal diferença em relação
aos dispositivos baseados em mola, maior facilidade de dosear a força de actuação, ou seja, escolher
a força de chuto.

2.3 Tipos de agentes

A missão da Inteligência Artificial, como o próprio nome indica é dotar os agentes de inteligência
para cumprirem as suas tarefas de uma forma eficiente e autónoma.

A figura 2.8 permite contextualizar o papel da Inteligência Artificial na arquitectura de um agente.
Assim sendo, a sua missão é definir o centro de decisão. Este centro de decisão pode ser implemen-
tado segundo vários modelos, designadamente: agente reactivo simples, agente reactivo com estado
interno, agente deliberativo orientado por objectivos e agente deliberativo orientado por função de
utilidade.

2.3.1 Agente reactivo: simples

Os agentes reactivos simples, como o próprio nome indica, reagem às suas percepções do ambiente.
As acções escolhidas são sempre com base na sua percepção actual sem utilizar informação de uma
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Figura 2.8: Arquitectura de base de um agente

Figura 2.9: Agente reactivo: simples

percepção passada, ou seja, não há história de percepções.

A implementação deste tipo de agente tem como base um conjunto de condições (ver figura 2.9)
que perante um certo valor de uma percepção resulta na escolha de uma determinada acção. Esta
escolha é feita de forma sequencial, ou seja, vai-se percorrendo as condições e quando se encontrar
uma condição verdadeira, escolhe-se a acção associada a essa condição.

Este tipo de agente, como não mantém um estado interno, é susceptı́vel de ficar a oscilar entre duas
ou mais condições. Uma solução para resolver este problema é introduzir um factor aleatório no
momento de decidir a acção a executar.
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2.3.2 Agente reactivo: com estado interno

Os agentes reactivos com estado interno têm um funcionamento muito semelhante aos agentes reac-
tivos simples apresentados na secção 2.3.1, mas têm uma diferença, mantém um estado interno. Este
estado interno vai permitir acumular o conhecimento do ambiente recolhido em percepções anteriores.

Figura 2.10: Agente reactivo: com estado

Na figura 2.10 pode ver-se que é possı́vel ter um conjunto de condição-acção por estado. Neste tipo
de agentes cada condição pode mudar o estado interno do agente, permitindo mudar de estado e
consequentemente passar para outro conjunto de condição-acção.

2.3.3 Agente deliberativo: orientado por objectivos

Os agentes orientados por objectivos utilizam objectivos para planear e escolher a acção. Este tipo
de agentes é semelhante ao agente reactivo com estado onde a utilização de objectivos permite uma
maior flexibilidade, pois para o mesmo estado o agente pode ter comportamentos diferentes.

2.3.4 Agente deliberativo: orientado por função de utilidade

A função utilidade permite medir numericamente a satisfação do agente, ao executar uma determinada
acção. Os agente orientados por funções de utilidade determinam as acções a tomar, escolhendo a
acção que tenha o valor de utilidade mais elevado.
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2.4 Estudo de arquitecturas de equipas da MSL

2.4.1 Tribots

A equipa Tribots2 resulta do grupo de investigação de Neuro-Informática da Universidade Alemã de
Osnabrück.

A sua arquitectura [14–16] é baseada em comportamentos, herdando alguns conceitos de arquitecturas
Belief-Desire-Intention (BDI) [17]. Neste arquitectura cada comportamento tem uma interface que
verifica as condições de activação e uma interface que verifica se as condições de satisfação estão
cumpridas. O comportamento está activo enquanto a condição de satisfação não está satisfeita.

Um árbitro, usando o conceito BDI, é utilizado para gerir os comportamentos de um determinado
tipo de agente. Contextualizando esta arquitectura nos conceitos BDI, a crença (belief ) é o estado
do mundo, os desejos (desire) são os comandos enviados aos actuadores e a intenção (intention)
é o comportamento activo. Os comportamentos estão ordenados do mais prioritário para o menos
prioritário. Utilizando diferentes tipos de árbitros é possı́vel escolher os comportamentos segundo as
suas prioridades ou executar um comportamento até que se verificar a condição de satisfação. Estes
árbitros BDI são eles próprios um comportamento, assim sendo, é possı́vel que sejam utilizados por
outros comportamentos, criando uma hierarquia de comportamentos.

Esta abordagem pode ser comparada com uma máquina de estados finitos, onde as transições não
são especificadas (ver figura 2.11). Este facto permite que sejam adicionados e retirados estados sem
originar problemas na definição de transições.

Figura 2.11: Diagrama de comportamentos equipa Tribots

2http://www.ni.uos.de/index.php?id=25
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2.4.2 COPS

A equipa COPS (Cooperative sOccer Playing robotS) da Universidade de Estugarda utiliza papéis
para coordenar a sua equipa. Estes papéis são fixos durante o jogo, apesar de poderem ser alterados
entre agentes de uma forma dinâmica. No caso de se definir papéis do mesmo tipo, existe a possibili-
dade de utilização de sub-papéis.

(a) Rede de passe em jogo (b) Editor de redes XPlM

Figura 2.12: Dois exemplos de redes XPlM

Para modelar a coordenação entre agentes são utilizadas redes de decisão, mais concretamente, redes
XPlM [18, 19] que são um sub-conjunto de redes de Interacção. A nı́vel dos comportamentos, é
utilizada a linguagem de especificação de comportamentos XABSL [20]. A figura 2.12 ilustra o
editor desta linguagem.

2.5 Sumário

Neste capı́tulo foram explicados alguns conceitos necessários para a contextualização desta dissertação,
nomeadamente, o conceito de agente. De seguida foram apresentados os conceitos dos vários tipos de
agentes. Por fim foi elaborado um estudo das arquitecturas utilizadas por duas equipas: os Tribots da
Universidade de Osnabrück e os COPS da Universidade de Estugarda.
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Capı́tulo 3

O robô CAMBADA

No capı́tulo 2 secção 2.2 foram apresentadas soluções a nı́vel de estrutura fı́sica, sensores e actuadores,
tendo sido algumas delas implementadas pela equipa CAMBADA.

A equipa CAMBADA é uma equipa constituı́da por seis robôs completamente autónomos. Este con-
junto de robôs tem como principal objectivo jogar futebol na Liga dos Médios, Middle Size League
(MSL) do RoboCup.

Na figura 3.1 pode ver-se a evolução dos robôs da equipa CAMBADA. Como suporte à implementação
e validação do trabalho desenvolvido foram usadas as versões 2 e 3/4.

Figura 3.1: Evolução dos robôs CAMBADA

O robô CAMBADA tem uma altura de 76 cm e uma base circular, com 48cm de diâmetro. O robô
CAMBADA pode separar-se em três partes: a base, o sistema computacional e o sistema de visão.
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3.1 Base

Como já foi referido anteriormente, a base do robô CAMBADA é circular, com cerca de 48 cm de
diâmetro, composta por actuadores, tais como: motores, sistema de chuto e sistema de retenção de
bola. Este base também dispõe de um sensor de barreira (ver figura 2.5). Para controlar os actuadores
e sensores existe uma camada de electrónica designada por hardware de controlo.

Figura 3.2: Base

Actuadores

Para a locomoção o robô CAMBADA utiliza três de motores Maxon [21], de 150W e 24V e três
rodas omni direccionais. Este conjunto permite um movimento holonómico, ou seja, movimento em
qualquer direcção e com qualquer orientação.

O sistema de retenção de bola é composto por um motor vulgar de 12V e uma roda usada em carros
de modelismo. Este sistema permite controlar a bola a quando a condução.

O sistema de chuto é electromagnético, baseado no princı́pio de uma coil Gun [22, 23].

Para suprir as necessidades energéticas, são usadas três baterias 12V de Nı́quel Metal-Hı́brido (NiMh).
Este conjunto de baterias permite uma autonomia de duas horas.

Sensores

O sensor de barreira (ver figura 2.5) permite detectar se bola está encaixada na frente do robô. Esta
informação é de elevada importância pois permite saber se a bola é afectada pelo sistema de chuto.
Este sensor é composto por um receptor e emissor de infra-vermelhos. Este conjunto de recep-
tor/emissor criam entre eles um feixe de infra-vermelho. Na situação em que a bola está encaixada na
frente do robô, interrompe esse feixe.
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O deslocamento das rodas do robô é medido através de sensores especı́ficos, localizados nos motores.
Estes sensores são designados por encoders. A conjugação desta informação permite gerar informação
de odometria que posteriormente enviada para o agente.

A bússola electrónica permite que se tenha uma informação da orientação absoluta. Esta informação
permite que se detecte situações de erro na auto-localização, através da comparação da orientação
calculada pelo agente e a orientação efectiva.

(a) barreira (b) bussola

Figura 3.3: Sensor barreira e bússola electrónica

3.1.1 Hardware

A arquitectura de hardware é baseada numa arquitectura distribuı́da [24]. O hardware é composto
por um conjunto de micro-controladores [25] e por electrónica de ligação. Estes micro-controladores
estão interligados por uma rede CAN [26] [27], a qual utiliza o protocolo Flexible Time-Triggered
communication over CAN (FTT-CAN) [28], de modo a permitir uma uma sincronização entre os
módulos e cumprir os requisitos de tempo real.

Figura 3.4: Hardware - lógica de controlo

3.1.2 Sistema de visão

O principal sensor é a visão, este permite detectar os principais objectos do campo de futebol robótico.
Os objectos detectados são: a bola, as linhas do campo e os obstáculos. O sistema de visão foi
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reformulado da versão 2 para a versão 3/4.

O sistema de visão da versão 2 era composto por duas câmaras FireWire Unibrain1. A câmara frontal
permitia a detecção da baliza a 12m, a bola a 6m e os obstáculos a 3m. A outra câmara era omni-
direccional de curto alcance e permitia detectar a bola a menos de 1m.

A versão 3/4 dispõe de um sistema de visão catadióptrico composto por um espelho hiperbólico e uma
câmara FireWire2 PointGrey3.

Figura 3.5: Sistema de visão

3.1.3 Sistema Computacional

Na versão 2, o sistema computacional era um PC vulgar de secretária, com um processador Intel
Pentium 4 a 2.8GHz e com 512MB de memória RAM. Este utilizava como unidade de armazena-
mento uma Compact Flash de 512MB. O sistema operativo escolhido é GNU/Linux [29], tendo sido
feita uma instalação from scratch, através do debootstrap da distribuição Debian [30]. Este sistema
dispunha de uma autonomia inferior a 45 minutos.

O sistema computacional utilizado actualmente na versão 3/4 é um computador portátil Fujitsu-
Siemens 12”, com um processador Intel Core2Duo [31], 1GB de memória RAM e dispõe de uma
autonomia de duas horas. O sistema operativo escolhido é o GNU/Linux [29], mais especificamente a
distribuição Ubuntu [32]. Este sistema computacional, devido ao seu processador Core2Duo, permite
uma execução paralela de tarefas.

3.2 Sumário

Neste capı́tulo efectuou-se um descrição das principais caracterı́sticas da estrutura que suporta o robô
CAMBADA, na sua versão 2 e 3/4. Assim, apresentaram-se as principais caracterı́sticas dos actuado-

1http://www.unibrain.com/Products/VisionImg/Fire_i_BC.htm
2http://pt.wikipedia.org/wiki/FireWire
3http://www.ptgrey.com
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Figura 3.6: Sistema computacional

res, sensores, hardware, sistema de visão e sistema computacional do robô CAMBADA.
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Capı́tulo 4

Arquitectura de Software da equipa
CAMBADA

No capı́tulo anterior foram apresentados os sensores e actuadores que estão presentes nos robôs CAM-
BADA.

O software da equipa CAMBADA divide-se em três componentes: arquitectura de software, arquitec-
tura do agente e gestão do estado do mundo. A arquitectura de software permite ter uma visão geral
dos vários módulos de software das diversas áreas e as relações entre eles. A arquitectura do agente
permite demonstrar como são interpretadas as percepções recolhidas pelos sensores e de que modo
são geradas as acções que são enviadas para os actuadores. A gestão do estado do mundo permite
a organização, filtragem e agregação da informação recolhida pelos sensores, de modo a facilitar o
acesso por parte do agente.

4.1 Arquitectura de software

A arquitectura de software é composta por seis componentes: RtDb1, Comm, HWComm, Monitor,
Vision e CambadaAgent, como ilustra a figura 4.1.

A RtDb [33] é o componente desta arquitectura de software que permite armazenar e fornecer meca-
nismos para o acesso à informação persistente. Cabe, também, a este componente providenciar um
canal de comunicação para a troca de informação entre os vários processos deste sistema. Através
da figura 4.1 visualiza-se que RtDb é constituı́da por duas partes, uma partilhada e outra local. Ac-
tualmente, a RtDb é implementada através da memória partilhada, fornecida pelo sistema operativo
GNU/Linux [29, 32].

O Comm é o componente [34–36] responsável pela troca/difusão da informação entre os vários agen-
tes. A informação partilhada por todos os agentes CAMBADA é a informação que está localizada na
parte partilhada na RtDb. Este componente usa o protocolo Multicast para a difusão da informação.

O HWComm é responsável pela comunicação entre a unidade computacional (PC portátil) e a base.
No sentido PC-BASE fluem as mensagens que permitem controlar os motores, o sistemas de retenção

1RealTime DataBase
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Figura 4.1: Arquitectura de software

de bola e o sistema de chuto. Por outro lado, no sentido BASE-PC fluem as mensagens de monitorização
da tensão das baterias, o estado do sensor de barreira e informação de odometria.

Com o trabalho de desenvolvimento do componente Monitor pretendeu-se suprimir duas lacunas do
sistema, designadamente, saber o estado dos processos principais que permitem o funcionamento do
robô CAMBADA e a monitorizar a bateria da unidade computacional.

Figura 4.2: Diagrama de actividade do Monitor

Como se pode visualizar na figura 4.2 o Monitor é composto por dois fios de execução distintos. O
fio de execução Thread-main permite monitorizar os processos Vision, HWComm, Comm e Camba-
daAgent. Esta monitorização permitir saber se os referidos processos estão activos, ou seja, se estão
a correr e caso estejam a correr, se têm um funcionamento normal. Este funcionamento é inferido
através do tempo de actualização da informação que os processos produzem. No caso de um processo
não estar a funcionar correctamente, a decisão tomada é parar e arrancar novamente o processo.

O fio de execução Thread-1 é responsável pela monitorização da percentagem de carga da bateria
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e do seu estado. Este estado tem três valores possı́veis: a descarregar, a carregar e completamente
carregado.

Figura 4.3: Arquitectura do componente Vision

No componente Vision o trabalho centrou-se na definição da arquitectura. Este componente é res-
ponsável pela aquisição e processamento de imagem. O processamento de imagem tem como objec-
tivo a detecção de vários elementos que estão presentes no campo de futebol robótico. Os principais
objectos a serem detectados são a bola (fifa nº5 cor de laranja), os obstáculos e as linhas brancas do
campo [37].

(a) Sensores radiais (b) Máscara

(c) Imagem original (d) Imagem segmentada (e) Imagem processada

Figura 4.4: Sistema de visão

A figura 4.4(a) permite visualizar os sensores radiais [38,39] usados para a detecção dos objectos. Os
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sensores radiais são previamente criados segundo o algoritmo de Bresenham [40,41]. O uso deste tipo
de sensores permite numa imagem de 640x480 pixeis, uma redução de 50%. Ainda é aplicada uma
máscara (ver figura 4.4(b)) para não se processar os pixeis que estão no corpo do robô, o que permite
uma nova redução de 50% no número de pixeis processados.

O componente CambadaAgent é responsável pelo processamento das percepções e geração de ordens
para os actuadores. Este componente vai ser descrito detalhadamente na secção 4.2.

A sincronização dos processos envolvidos nesta arquitectura é garantida através da biblioteca Pman
[?] (Process Manager).

4.2 Arquitectura do agente CAMBADA

A missão de equipa de robôs futebolistas é muito complexa. Pelo facto do seu objectivo ser complexo
o de jogar futebol, e também ao pelo facto do ambiente de actuação ser extremamente dinâmico.

A necessidade de especificar e implementar uma arquitectura de software, resulta da complexidade
das tarefas que uma equipa de robôs futebolistas se propõe resolver.

A arquitectura que foi especificada e implementada baseia-se em três pontos fundamentais: a gestão de
informação, comportamentos básicos [42] e papéis. A gestão de informação usada neste arquitectura
vai ser analisada em detalhe na secção 4.3.

Figura 4.5: Arquitectura do agente CAMBADA

Como se comprova através da figura 4.5 é possı́vel separar a arquitectura implementada em quatro
partes, o estado do mundo, Integrator, Strategy e o Decision.

4.2.1 Integrator

O Integrator é o módulo responsável por converter a informação recolhida pelos sensores em informa-
ção tratada e usável. Este módulo é igualmente responsável por integrar as informações difundidas por
outros agentes e pela BaseStation [43]. A BaseStation é o software responsável pelo processamento
das ordens enviadas pela Referee-Box, pelo controlo e monitorização do estado interno dos robôs
CAMBADA. O Coach vai ser detalhado no capı́tulo 5, por ser usado na coordenação da equipa.

O Integrator começa por integrar a informação que vem da Base, tensão das baterias e odometria.
De seguida, integra a informação proveniente da BaseStation, cor da equipa, baliza a atacar, estado
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do robô (running), o seu papel e o game-state. O motivo de se poder definir o papel através da Ba-
seStation prende-se com a possibilidade de se efectuarem testes a um determinado papel, durante a
competição a informação enviada é Auto, possibilitando aos agentes determinarem o melhor papel
para si. Continuando a análise, constata-se que este módulo efectua a integração de informação dos
colegas de equipa. Esta integração é feita, para recolher a informação do papel, cor de equipa, estado
do robô e a baliza a atacar. Caso um robô deixe de funcionar é necessário corrigir o seu estado e
passá-lo para notRunning. Esta detecção é feita através da RtDb e a sua funcionalidade de permi-
tir saber à quando tempo foi actualizada a informação. Depois da integração dos obstáculos e da
bússola, é feita a integração da localização, a qual é feita com a informação da detecção das linhas do
campo [37], a posição anterior e o módulo de localização [44]. De seguida é realizada a certificação
da localização, com base na bússola. Essa detecção, como ilustra a figura 4.6, é baseada na diferença
entre a orientação dada pelo módulo de localização e pela orientação dada pela bússola. A figura
4.6 ilustra a certificação da localização e a classificação da diferença dos ângulos. A zona verde re-
presenta uma localização correcta, a zona amarela representa uma localização correcta mas invertida.
Para a corrigir esta situação é necessário apenas fazer mirror da localização. As zonas vermelhas
representam uma localização errada, logo é necessário forçar uma relocalização.

Figura 4.6: Detecção de erros de localização com base na bússola electrónica

O Integrator integra a informação da posição da bola da visão omni, da visão frontal e dos outros agen-
tes. Cabe a este módulo a tarefa de integrar sucessivas posições da bola, determinar a sua velocidade
e filtrar o ruı́do existente [45], para esse efeito é usado um filtro de Kalman [46].

No gameState a integração feita é no sentido de criar estados a partir dos sinais vindos da RefereeBox.
A figura 4.7 ilustra o diagrama de estados do gameState. Cada falta dá origem a dois estados, o pre e
o post. No pre os robôs colocam-se em posição. No post, se as faltas forem a favor, os robôs executam
as jogadas estudadas, no caso de serem contra, vão esperar que passem os dez segundos ou que a bola
se mova.

4.2.2 Strategy

O módulo Strategy é responsável pela gestão da estratégia da equipa CAMBADA e vai ser detalhado
no capı́tulo 5.

27



Figura 4.7: Diagrama de estados do GameState

4.2.3 Decision

Decision é o módulo que implementa a decisão das ordens a enviar para os actuadores, baseando-se
em papéis e comportamentos.

Este módulo tem um método chamado roleSelection, este escolhe o papel que o agente vai ter. O
método de selecção dos papéis vai ser descrito no capı́tulo 5, o qual explica a coordenação da equipa
CAMBADA. Depois da selecção do papel cabe ao módulo Decision activar este papel.

Papéis

O papéis são implementados através de uma classe abstracta Role. Na figura 4.8 pode ver-se que a
classe Role apresenta dois métodos importantes: run e changeBehaviour. O método run é chamado
para activar o papel. Esta activação é feita através da chamada do método abstracto determineNextS-
tate que dependendo de papel para papel tem uma implementação própria. Essa implementação per-
mite determinar um comportamento cujo cálculo e execução é efectuado nesta fase. Importa salientar
que para a implementação de um novo papel apenas é necessário implementar o método determine-
NextState da nova classe, do novo papel. O changeBehaviour é o método utilizado pelos papéis para
usar/activar um comportamento.

Importa referir que a cada ciclo o papel não é destruı́do e nem inicializado novamente, o que significa
que, possibilita a persistência de informação.

Comportamentos

Os comportamentos básicos são a base da decisão da equipa CAMBADA. Depois de se escolher o
comportamento básico através de um papel, cabe ao comportamento converter uma tarefa em ordens
para os actuadores.

Analisando a figura 4.9, pode-se constatar que a classe Behaviour tem seis métodos importantes: reset,
calculate, execute, grabberControl, kickTo e passTo. Os métodos reset e calculate são abstractos e a
sua implementação numa nova classe origina um novo comportamento. O reset é chamado quando há
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Figura 4.8: Diagrama de Papéis

uma troca de comportamento, ou seja, quando o papel executou um changeBehaviour para o compor-
tamento com um novo identificador. O calculate é o método que vai conter o código de selecção das
ordens a enviar para os actuadores. Os métodos kickTo e passTo são usados para auxiliar na conversão
de unidades SI em unidades do actuador.

O método grabberControl permite o controlo automática do sistema de retenção de bola. Este sistema
activa-se automaticamente quando a bola se encontra dentro de um arco com 90 graus de abertura e
1.5 metros de raio, como ilustra a figura 4.10.

4.3 Gestão da informação do agente CAMBADA

Para garantir uma fácil avaliação do estado do mundo e que a melhor decisão seja tomada foi ne-
cessário criar uma estrutura de suporte à informação recolhida. Assim sendo, foi criado o conceito de
WorldState cuja organização é reflectida na figura 4.11.

A classe ZoneMatrix permite a descretização do campo em células de 50cm. Cada célula pode ser
do tipo: começo, destino, obstáculo e livre. Esta classe permite determinar o caminho mais curto
usando o algoritmo A* [47]. Este algoritmo fornece o caminho mais curto entre a célula de começo e
a célula de destino. Este algoritmo foi modificado de modo a não considerar células a uma distância
n de células com obstáculo. A figura 4.12 ilustra dois caminhos calculados, a célula de começo (azul)
e a célula de destino (vermelho). O caminho representado pela cruz magenta é o caminho calculado
pelo A* e o amarelo representa o caminho calculado pelo o A* modificado. Esta modificação deve-
se ao facto do caminho pretendido evitar os adversários, ou seja, evitá-los não apenas por causa das
colisões, mas para manter uma distância segura para que eles não roubarem a bola.

O WorldState é o repositório de informação tratada que vai ser usada pelo agente que selecciona as
acções a executar. É providenciado por esta estrutura três grupos de método. O primeiro grupo é
composto por métodos de transformação de sistema de coordenadas. Permite conversões do sistema
de coordenadas relativas do robô em coordenadas absolutas, e o contrário. A figura 4.13 ilustra os

29



Figura 4.9: Diagrama de Comportamentos

dois sistemas de coordenadas, os eixos vermelhos representam o sistema de coordenadas absolutas,
sendo o sentido de jogo da esquerda para a direita, o sistema de coordenadas relativas ao robô são
representados pelos eixos azuis. O segundo grupo é composto por métodos de perguntas ao estado
do mundo. Neste grupo existem funções que retornam informações tais como o robô mais próximo
da bola, os robôs que têm um determinado papel, ou se está um posição de remate, se está perto de
uma determinada área. Também existem métodos que fornecem a melhor direcção para conduzir a
bola, segundo um campo de utilidades ou segundo um mapa de ocupação. Estas perguntas permitem
simplificar a análise das acções a tomar.

O terceiro e último grupo de métodos é um conjunto de métodos que fornecem as dimensões do
campo, alguns pontos chave e as dimensões das áreas. Para se manter uma boa abstracção e separação
entre as percepções e a centro de decisão é necessário.

4.4 Distribuição de código em sistemas distribuı́dos

Após, a especificação e implementação da arquitectura de software, controlo e coordenação dos agen-
tes CAMBADA, existia a necessidade de difundir o software de controlo pelos vários agentes, visto
que a equipa CAMBADA não possuı́a nenhum mecanismo de distribuição.

Para suprimir esta lacuna e finalizar o trabalho de especificação e implementação da arquitectura
de software dos agentes CAMBADA foi desenvolvido o sendToCambadas. Este é um script imple-
mentado na linguagem de scripting bash [48], usando o rsync sincroniza o código e os ficheiros de
configuração do PC de compilação para os agentes. Esta sincronização pode ser parcial, de modo a
sincronizar apenas alguns agentes definidos pelo utilizador. Após a sincronização é enviado a cada
agente um sinal de reconfiguração para estes lerem novamente os ficheiros de configuração.
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Figura 4.10: Zona de activação do dispositivo de retenção de bola

Figura 4.11: Diagrama de classes do estado do mundo

4.5 Sumário

Neste Capı́tulo foram descritos todos os componentes da arquitectura software. De seguida apresentou-
se o trabalho desenvolvido na especificação e desenvolvimento da arquitectura de software da equipa
CAMBADA, com especial atenção na arquitectura do agente e seus mecanismos de gestão da informação.
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Figura 4.12: Caminhos calculados por A* e A* modificado

Figura 4.13: Sistemas de coordenadas (absoluto e relativo) utilizado pelo agente CAMBADA
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Figura 4.14: Exemplo de aplicação do sendToCambadas
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Capı́tulo 5

Coordenação da equipa CAMBADA

Após a descrição do trabalho desenvolvido na arquitectura de sofware, controlo e coordenação da
equipa CAMBADA, segue-se a descrição/comparação dos mecanismos de coordenação usados em
dois momentos distintos, na versão 2 e na versão 3/4. É de salientar que as versões 2 e 3/4 usam a
arquitectura de software descrita no capı́tulo anterior.

Os mecanismos de coordenação são necessários para minimizar o esforço de cada agente, bem como
optimizar os recurso da equipa. Nas versões 2 e 3/4 são usados papéis para coordenar os vários agentes
CAMBADA, onde cada agente tem um determinado papel atribuı́do. Esta atribuição de papéis é feita
de um modo coordenado e dinâmico onde cada agente sabe o seu papel em campo e o papel dos
colegas de equipa.

5.1 Versão 2

Como foi descrito no capı́tulo 3, a versão 2 apenas apresentava uma visão frontal e uma visão omni-
direccional de curto alcance (50 cm), não dispunha de um módulo de auto-localização. O sistema de
chuto apenas chutava bolas rasteiras e sem grande força. O primeiro ponto de trabalho foi a análise
de requisitos de coordenação, tendo em conta que a informação disponı́vel era apenas relativa.

Cada papel é uma composição de comportamentos básicos. Nesta versão cada papel é implementado
segundo uma máquina de estados. Nesta versão do robô foram desenvolvidos para o agente CAM-
BADA quatro papéis, como ilustra a figura 5.1. Os papéis Striker, Defender e Goalie são usados em
jogo. Em situações de reposição de bola do adversário é usado o papel Midfielder. O papel Test é
usado apenas para efectuar testes a determinados comportamentos.

O papel de guarda-redes (Goalie) tem como objectivo defender a baliza dos remates dos adversários.
Este papel tem um sistema de auto-localização rudimentar, utilizando os postes da baliza e a linha
de fundo para se localizar. Com esta auto-localização e integrando as sucessivas posições da bola é
possı́vel calcular a sua velocidade. O cálculo da velocidade da bola permite determinar se a bola se
afasta, se vem em direcção à baliza ou se vem em direcção à baliza e não a intercepta.

Este papel tem como base uma máquina de estados simples como ilustra a figura 5.2. O estado
gsDefend executa o comportamento GoalieDefend. Este comportamento calcula a intercepção da
direcção da bola com a linha de fundo e caso essa intercepção esteja dentro da baliza move-se para
esse ponto. O estado gsKickAway tem como objectivo afastar a bola da baliza, movendo-se para ela
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Figura 5.1: Diagrama classes com os papéis usados na versão 2

e chutando-a. Este estado é activado quando a bola está n ciclos perto do guarda-redes. Este estado
também tem um limite de ciclos e caso esse limite seja alcançado, volta para o estado gsDefend. O
estado gsRecalibrate é um estado que deveria servir para o reposicionamento do guarda-redes, quando
este se perde. Actualmente o estado de re-calibração não está implementado.

Figura 5.2: Diagramas de estados do papel Goalie

O defesa (Defender) [49] posiciona-se à frente da linha de grande área tem como principal objectivo
bloquear a bola, caso venha no sentido da baliza. Este desloca-se paralelamente à linha de fundo
de modo a impedir a passagem da bola. Funciona de modo semelhante ao Goalie, mas sem auto-
localização.

O atacante (Striker) é um papel activo, que tem como objectivo interceptar a bola, driblar para a baliza
adversária e chutar. Este papel foi implementado através de uma máquina de estados apresentada na
figura 5.3.

A máquina de estados tem como objectivo apanhar a bola, conduzir e rematar a bola para a baliza.
No caso de não ver a bola, o robô roda à procura da bola durante um certo perı́odo de tempo, depois
procura a própria baliza, indo em direcção a ela até ficar à distância d, definida pelo utilizador. No
caso de detectar a bola, o robô dirige-se a ela, até ter a bola ficar encaixada no sistema de retenção de
bola. Depois roda em torno da bola, até se vericar o alinhamento o robô, a bola e a baliza adversária.
Neste ponto estão reunidas as condições para começar o drible até à baliza adversária, evitando os
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Figura 5.3: Diagramas de estados do papel Striker

adversários. Quando o robô estiver numa situação de remate efectua o comportamento para chutar a
bola, que escolhe a melhor direcção para o remate.

Este papel também é responsável pelas reposições de bola a favor. Esta reposição consiste em manter
o alinhamento robô, bola e baliza adversária. o robô mantém uma distância de 30 cm da bola. Com
esta reposição de bola o robô fica pronto para avançar para a baliza adversária.

O Midfielder é papel usado durante as reposições de bola do adversário. Para evitar um remate à
baliza ou uma saı́da de bola em direcção à baliza surgiu a necessidade de formar uma barreira. Como
estes agentes não dispõem de auto-localização foi necessário desenvolver nova estratégia. A figura 5.4
ilustra a solução encontrada. Cada robô dirige-se em direcção à própria baliza. Quando a distância
à própria baliza for inferior a três metros passa a dirigir-se para a bola ficando a dois metros da
bola, distância minı́ma permitida pelas regras da MSL. Com os três robôs de campo a executarem
este movimento e devido ao desvio de obstáculos eles formam uma barreira perfeita entre a bola e a
própria baliza.

Após a descrição e implementação dos papéis, para finalizar este esquema de coordenação baseado
em papéis é necessário definir que papel cada agente deve ter em cada instante. O algoritmo para a
determinação de cada papel é baseado na distância à bola. Cada agente calcula a distância à bola de
todos os agente. O agente mais próximo da bola é o atacante os restantes agentes de campo passam a
ser defesas.

5.2 Versão 3/4

Para além das diferenças fı́sicas descritas no capı́tulo 3 esta versão do agente CAMBADA dispõe
de um módulo de auto-localização, baseado no algoritmo de localização [44] da equipa Tribot. Este
algoritmo utiliza a detecção das linhas brancas [37] e minimiza o erro entre a a detecção feita e as
linha de um campo virtual.

A versão 3/4 utiliza também um mecanismo de coordenação baseado em papéis. Os papéis (ver figura
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Figura 5.4: Formação da barreira

4.8) existentes nesta versão são o atacante (Striker), o guarda-redes (Goalie), o defesa (Midfielder).
Para os reposicionamentos de bola são usados os papéis Toucher, Replacer, Barrier, Penalty e Park.

O Striker, nesta versão, também é implementado usando uma máquina de estados. Foi introduzida
uma modificação em relação à versão anterior, a noção de consciência. Esta consciência é composta
por um conjunto de condições que afectam a máquina de estados, independentemente do estado actual.
A filosofia desta máquina de estados é semelhante à máquina de estados usado da versão 2. O facto da
nova versão dispor de um módulo de auto-localização permite a simplificação da máquina de estados
do atacante. Na figura 5.5 visualiza-se o diagrama de estados, com a utilização de uma consciência.

Figura 5.5: Diagrama de estados do Striker

A consciência é composta por três condições especiais. A primeira condição é despoletada pelo des-
conhecimento da posição da bola, originando uma transição para o estado MoveToStrategicPosition.
A segunda condição é a proximidade à pequena-área do adversário. Caso o robô esteja ”perto” da área
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há uma transição para o estado OutOfTheirGoalArea. A terceira e última condição é a proximidade à
própria pequena área, esta origina uma transição para o estado OutOfGoalArea.

MoveToStrategicPosition é o estado que permite ao atacante, quando não vê a bola, deslocar-se para a
posição estratégica. No caso do número de agentes de campo ser superior a um, este agente desloca-se
para uma posição estratégica mais avançada.

OutOfTheirGoalArea é o estado que evita que o atacante entre na pequena área , o que constitui uma
falta segundo as regras da MSL. Por vezes a bola fica dentro da pequena área, neste o agente coloca-se
à frente da bola de modo a evitar um remate por parte do guarda-redes (único robô com permissão a
estar dentro da pequena área). No caso do atacante conseguir apanhar a bola que está dentro da área,
roda sobre si próprio de modo a rematar em direcção à baliza.

OutOfOurGoalArea, como já foi referido anteriormente, é o estado que proı́be qualquer robô de
entrar na pequena área, com a excepção do guarda-rede. Assim sendo, neste estado quando a bola se
encontra na própria área, o agente afasta-se para fora da pequena área, evitando fazer falta e deixando
espaço para o guarda-redes afastar a bola.

MoveToBall, como o próprio nome indica, é o estado que tem como objectivo apanhar a bola (bal-
lEngaged). Usando uma query ao estado do mundo que devolve o risco de apanhar a bola, calculado
através da posição da bola no campo. Este risco está catalogado em SideBand, OurBand, TheirBand e
NoDanger. Quando a bola está localizada numa das zonas de perigo a movimentação para apanhar a
bola é através de um ponto de aproximação, permitindo não atirar a bola para fora do campo. Durante
a movimentação para o ponto de aproximação o agente orienta-se para a bola no caso de TheirBand
e OurBand. Já no SideBand a orientação escolhida é a da bola. Quando não existe perigo, o agente
pode apanha a bola de duas formas, dirigindo-se directamente para ela ou efectuando uma intercepção
activa/passiva [45].

Score é o estado responsável por conduzir a bola para a baliza adversária, evitando os robôs ad-
versários e rematar à baliza. Utiliza um método do estado do mundo chamado kickable, permitindo
inferir que acção se deve escolher. O resultado TryToScore indica que a agente está em boas condições
de efectuar um remate. TooFar indica que o agente está longe da baliza é necessita progredir no
campo. Essa progressão é feita através do Dribble e a utilização de um campo de utilidades [50] es-
pecı́fico do Dribble. DeadAngle indica que o ângulo de remate é muito apertado, logo para maximizar
a probabilidade de marcar golo é necessária uma movimentação para o interior do campo. Obstacle
resulta do factor de existir um robô à frente do agente impedindo o remate. Assim sendo, é necessário
efectuar uma movimentação que evite este bloqueio.

A auto-localização permite tomar decisões diferentes dependendo da zona do campo, bem como me-
lhorar a coordenação da equipa. Após a resolução do problema da auto-localização surge um novo
desafio, o aumento das dimensões do campo. As dimensões aumentaram de 12m × 8m para 18m ×
12m, o que representa um aumento cerca de 50%. Este facto, aliado à falta de velocidade dos robôs
da equipa CAMBADA, criou a necessidade de melhorar os mecanismos de coordenação.

Posicionamento Estratégico

O campo de grandes dimensões e a falta de velocidade dos robôs CAMBADA criou a necessidade de
melhorar a distribuição da equipa de modo a maximizar a ocupação do campo. A solução adoptada foi
baseada no algoritmo da equipa FCPortugal [51] da liga de simulação 2D, o Situation Based Strategic
Positioning (SBSP) com Dynamic Positioning and Role Exchange (DPRE) [52, 53].
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Figura 5.6: Algoritmo de posicionamento da equipa CAMBADA

O algoritmo do posicionamento estratégico (formação) é implementado no módulo Strategy descrito
no capı́tulo 4. Na figura 5.6 ilustra o algoritmo de posicionamento com troca dinâmica de posições.
Este algoritmo permite calcular o posicionamento da equipa com base na posição da bola. O posi-
cionamento é calculado através da soma da posicionamento base do agente com a posição da bola
afectada de um factor de atracção. Este factor de atracção é composto pela componente dos XX e pela
componente dos YY. A figura 5.7 ilustra quatro exemplos de posicionamentos, onde se visualiza os di-
ferentes valores de atracção de cada agente. O posicionamento do canto superior esquerdo demonstra
as posições de base da equipa CAMBADA.

Durante um jogo da MSL, por vezes os robôs devido a problemas eléctricos e/ou mecânicos neces-
sitam de ser retirados de campo. No caso da equipa CAMBADA, a retirada de um robô causa a
diminuição do número de robôs em campo. Então surgiu a necessidade de adaptar o algoritmo des-
crito em [52, 53], no sentido de ordenar por prioridades as posições estratégicas. A posição 1 (Figura
5.7: agente 6) localiza-se sempre a 50 cm da bola, naturalmente é ocupada pelo Striker, pois este é o
papel atribuı́do ao agente que está em melhor posição para interceptar a bola. Esta precedência per-
mite uma coordenação perfeita entre o posicionamento estratégico e a atribuição de papéis. A posição
2 (Figura 5.7: agente 2) é um posicionamento de defesa ou Lı́bero1. Com as posições 3, 4 e 5 (Figura
5.7: agentes 3, 4 e 5) pretende-se maximizar a ocupação do campo de modo a proteger a baliza. Estas
três posições são ajustadas de jogo para jogo para adaptar a formação as caracterı́sticas da equipa ad-
versária. Estes ajustes permitem melhorar o desempenho global da formação pois permite a adaptação
ao adversário.

1Designação para defesa com a função de recuperar a bola e ser o último defesa antes do guarda-redes
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Figura 5.7: Quatro exemplos de posicionamento estratégico

Coach

O algoritmo da formação, como já foi referido anteriormente, permite a atribuição dinâmica de cada
posição a cada agente. A posição é atribuı́da ao agente mais próximo dela. A decisão da atribuição
de uma posição é decidida por um agente externo, o treinador (Coach). Este treinador recebe a
informação partilhada por cada agente (localização, percepção da bola). Com esta informação con-
segue determinar as posições para cada agente e transmite-a. No caso da informação das posições
não chegar aos agentes, pela comunicação não funcionar ou pelo Coach não estar activo, cada agente
consegue determinar a sua própria posição.

O agente Coach pode determinar a formação adequada para um determinado momento do jogo. Para
essa tomada de decisão usa a informação do resultado do jogo, do tempo de jogo e do número de
agentes activos. Outro tipo de métricas usadas são o número de um determinado tipo de reposição de
bola. No caso de a equipa ter muitos pontapés de baliza quer dizer que a sua baliza está a ser alvo de
remates por parte do adversário. A discretização da posição da bola em zonas do campo e a distância
média à bola por parte dos agentes são mais duas métricas que podem ser usadas para avaliar o uso da
formação a usar.

5.3 Sumário

Neste capı́tulo foram explicados os mecanismo de coordenação da equipa CAMBADA. Esta explicação
foi dividida em duas partes, a versão de 2 e versão 3/4. As principais diferenças destas duas versões
assentam na ausência/presença de um módulo da auto-localização e no uso de visão Fontal / visão
omni-direccional. Os mecanismos de coordenação baseiam-se em papéis e numa troca dinâmica entre
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eles, de uma forma implı́cita. Apresentou-se as modificações ao algoritmo SPSP/DPRE para satisfazer
os requisitos das MSL.
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Capı́tulo 6

Conclusão

6.1 Discussão de resultados

6.1.1 Sı́ntese do trabalho desenvolvido

Com o objectivo de desenvolver e especificar uma arquitectura de controlo e de coordenação para a
equipa de futebol robótico CAMBADA, o trabalho desenvolvido foi separado em duas fases.

Na primeira fase analisou-se as principais referências sobre agentes e suas arquitecturas e alguns
trabalhos desenvolvidos pelas equipas da MSL (através de artigos e vı́deos). Foi elaborada uma
caracterização do ambiente de actuação, de tipos de agentes e de arquitecturas de agentes. De seguida
apresentou-se um estudo dos principais sensores e actuadores utilizados pelos robôs das equipas MSL.

Na segunda fase efectuou-se um levantamento dos requisitos necessários para um aumento do de-
sempenho da equipa CAMBADA, quer a nı́vel do hardware, quer a nı́vel de software. Após este
levantamento foi necessário proceder a algumas alterações do robô CAMBADA (ver capı́tulo 3) e
especificar a arquitectura de controlo, coordenação e software. A arquitectura especificada e desen-
volvida baseia-se em papéis, comportamentos básicos e em posicionamento estratégico (formação).
Este posicionamento estratégico foi uma adaptação do algoritmo SPSP-DPRE da equipa FCPortu-
gal, da liga de simulação. Foi desenvolvido o agente treinador, responsável por determinar a posição
estratégica, seleccionar a formação e recolher dados estáticos.

6.1.2 Artigos publicados

O trabalho desenvolvido no âmbito desta dissertação permitiu a publicação de quatro artigos em Con-
ferências com Júri internacional, um artigo numa Revista Nacional e três artigos para os Proceedings
do RoboCup (ver anexos).

Conferências com Júri internacional

RoboCup Middle Size Referee Box foi publicado na conferência IADIS – Applied Computing, Sa-
lamanca/Espanha. Este artigo reflectiu o trabalho da elaboração de uma nova arquitectura para a
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RefereeBox [54] da MSL. A RefereeBox é o software que funciona como ponte entre as ordens dadas
pelo árbitro humano e o mundo dos robôs.

Self-configuration of an Adaptive TDMA wireless communication protocol for teams of mobile
robots foi publicado na 13th Portuguese Conference on Artificial Intelligence, Guimarães/Portugal.
Este artigo retrata a auto configuração das comunicações WiFi. Esta auto configuração permite ajustar
o instante da transmissão da informação por parte de cada agente, com o objectivo de eliminar colisões
na transmissão.

An Omnidirectional Vision System for Soccer Robots foi publicado na In Progress in Artificial
Intelligence, edited by Springer Berlin / Heidelberg, Lecture Notes in Computer Science. Berlin,
2007. Este artigo retrata a arquitectura do sistema de visão exposta no capı́tulo 4, secção 4.1. Esta
arquitectura permite a detecção de objectos através de sensores radiais.

CAMBADA: Information Sharing and Team Coordination foi publicado na Autonomous Robot
System and Competitions: Proceedings of the 8th Conference, Aveiro/Portugal. Este artigo descreve
a arquitectura de partilha de informação e as metodologias de coordenação da equipa CAMBADA.
Também é descrito a arquitectura de software e de decisão do agente CAMBADA.

Technical Description Papers – TDP

Os Technical Description Papers são artigos com descrição técnica e têm como objectivo demonstrar
as inovações e os desenvolvimentos das equipa na fase de qualificação. Estes artigos são publicados
nos RoboCup Proceedings.

CAMBADA’2006: Team Description Paper foi elaborado para a qualificação da equipa CAM-
BADA na MSL do RoboCup2006 em Bremen, Alemanha.

CAMBADA’2007: Team Description Paper foi elaborado para a qualificação da equipa CAM-
BADA na MSL do RoboCup2007 em Atlanta, Estados Unidos.

CAMBADA’2008: Team Description Paper foi elaborado para a qualificação da equipa CAM-
BADA na MSL do RoboCup2008 em Suzhou, China.

Revistas nacionais

The Base Station Application of the CAMBADA Robotic Soccer Team foi publicado na Revista
DETUA, Volume 5, Nº1, Novembro de 2008. Este artigo retrata o trabalho desenvolvido na BaseStation
na equipa de Futebol Robótico. A BaseStation é o software que permite a tradução e a comunicação
das ordens recebidas pela Referee-Box, para os agentes CAMBADA. Permite visualizar a percepção
que os agentes têm do ambiente.

Artigos Submetidos

Coordinated Action in Middle-Size Robotic Soccer foi submetido para 2009 IEEE International
Conference on Robotics and Automation (ICRA) e aguarda o resultado da avaliação. Este artigo
retrata o trabalho desenvolvido na coordenação, partilha/integração de informação. São apresentados
os resultados da competição RoboCup2008 e o desempenho da arquitectura e dos algoritmos descritos.
Este desempenho é avaliado através de ficheiros de log e da análise de vı́deos de jogos.
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6.1.3 Análise de resultados

Nesta secção analisa-se os resultados das participações das competições nacionais e internacionais da
equipa de futebol robótico CAMBADA.

O trabalho desenvolvido na definição e implementação da arquitectura de software e na arquitectura
do agente CAMBADA permitiu um aumento do desempenho da equipa CAMBADA, que culminou
na vitória no RoboCup208 em Suzhou, China.

As figuras 6.1 e 6.2 ilustram a evolução do desempenho da equipa CAMBADA nos torneios de futebol
robótico. Este desempenho é avaliado através do número médios de golos marcados e sofridos por
jogo.

Na figura 6.1 visualiza-se o desempenho da equipa CAMBADA nas competições nacionais. Este
desempenho é avaliado através do número médio de golos marcados e sofridos.

O aumento do número médio de golos do Robótica 2005 para o Robótica 2006 deve-se à utilização
do papel de atacante, desenvolvido no âmbito da implementação da arquitectura de coordenação e
controlo da equipa CAMBADA. No Robótica 2007 foi utilizado pela primeira vez a auto-localização.
Assim sendo os algoritmos de remate à baliza passaram a utilizar a auto-localização para determinar
a posição da baliza. Este facto resultou num decréscimo do número médio de golos. Em 2008, já com
os algoritmos de auto-localização estabilizados, foi possı́vel melhorar o desempenho do atacante nas
várias situações de jogo (apanhar a bola junto às linha, jogadas estudadas, etc).

Na figura 6.1 pode-se visualizar um decréscimo gradual do número médio de golos sofridos por jogo.
Note-se que nos torneios Robótica 2007 e 2008 o número médio de golos sofridos por jogo é apenas
de 0.5 e 0.3 golos. Este facto deve-se à utilização do posicionamento estratégico/formação permitindo
travar a progressão do adversário bem como a rápida recuperação de bola.

Figura 6.1: Número médio de golos marcados e sofridos por jogo em competições Nacionais

A 6.2 permite analisar o desempenho da equipa CAMBADA em torneios internacionais. Nesta fi-
gura pode-se visualizar o aumento de desempenho ao longo das competições internacionais. A par-
tir do RoboCup 2007 houve um aumento de desempenho da equipa, quer a nı́vel de golos marca-
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dos, quer a nı́vel de golos sofridos. Este facto deve-se ao uso de auto-localização que permitiu a
implementação do posicionamento estratégico/formação, bem como uma melhoria na coordenação
da equipa (atribuição de papéis e jogadas estudadas).

Figura 6.2: Número médio de golos marcados e sofridos por jogo em competições Internacionais

RoboCup 2008

Durante o RoboCup 2008, em Suzhou (China), a equipa CAMBADA sagrou-se campeã mundial na
categoria Middle Size League (MSL). Na tabela 6.1 visualizar-se o desempenho da equipa CAM-
BADA. Num total de 13 jogos a equipa ganhou 11 e perdeu apenas 2, marcando um total de 73 golos
e sofrendo 11. A equipa CAMBADA obteve o melhor goal average do torneio.

Fase Jogos Vitórias Empates Derrotas Golos Marcados Golos Sofridos
Grupos 1 5 3 0 0 41 2
Grupos 2 4 3 0 1 16 3
Grupos 3 2 1 0 1 5 2
Semi-final 1 1 0 0 4 3

Final 1 1 0 0 7 1
Total 13 11 0 2 73 11

Tabela 6.1: Resultados RoboCup2008

Com o objectivo de analisar a posse de bola durante o RoboCup 2008, recolheu-se os ficheiros de
log dos jogos realizados, contendo as várias posições da bola. Para se efectuar a análise dividiu-se
o campo em 12 partes iguais e enquadrou-se cada posição da bola numa das 12 zonas do campo. A
figura 6.3 ilustra a localização da bola segundo as zonas definidas. Através da figura 6.3 é possı́vel
observar-se que a bola localiza-se 27% no próprio meio campo e 73% no meio campo adversário.

Analisando os resultados pode-se concluir que a combinação dos papéis Striker e Midfielder, com
o posicionamento estratégico/formação permitiu à equipa CAMBADA superiorizar-se em termos de
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Figura 6.3: Localização da bola

tendência de jogo. Assim, estando a bola mais perto da baliza adversária aumenta a probabilidade de
se marcar um golo. Esta conclusão é suportada pelo elevado número de golos marcados pela equipa
CAMBADA.

A figura 6.4 permite visualizar os remates sofridos e efectuados durante os jogos contra as equipas:
MRL (Azad University of Qazvin, Iran), SCUT 100Steps (South China University of Technology,
China), CoPS (University of Stuttgart, Germany) e TechUnited (Eindhoven University of Technology,
Netherlands). Os remates efectuados são representados por cı́rculos azuis, enquanto os remates so-
fridos são representados pelos cı́rculos magenta. Os remates que originaram golos são representados
através de um sol, com a respectiva côr.

Através da análise da figura 6.4 pode concluir-se que a equipa CAMBADA é a mais rematadora, sendo
os remates efectuados predominantemente no campo do adversário.

Com base nos ficheiros de log foi possı́vel calcular a distância à bola do robô mais próximo. Durante
o RoboCup 2008 a valor médio da distância minı́ma à bola foi de 1.246 ± 0.325 metro Como a
distância minı́ma é menor a 1.3 metros, valor este inferior à velocidade máxima do robô CAMBADA,
permite que a equipa controle a progressão da bola. Este resultado permite avaliar positivamente a
implementação/utilização do posicionamento estratégico/formação da equipa CAMBADA.

6.1.4 Notas Finais

Na final do Robótica 2007, após o empate a zero no tempo regulamentar, foi necessário decidir o tor-
neio através da marcação de penaltis. A arquitectura de controlo/coordenação não previa a situação de
penaltis. Durante a escolha da baliza e da ordem de marcação dos penaltis, foi necessário implemen-
tar este papel, em menos de 5 minutos. Para cumprir os requisitos modificou-se o papel de atacante
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(a) Round Robin 2: CAMBADA 9 – SCUT 100Steps 0 (b) Round Robin 3: CAMBADA 4 – MRL 0

(c) Meia-Final: CAMBADA 4 – COPS 3 (d) Final: CAMBADA 7 – TechUnited 0

Figura 6.4: Remates executados e sofridos pela equipa CAMBADA

de modo a efectuar a marcação dos penaltis. A primeira equipa a marcar os penaltis foi o MINHO,
marcando apenas dois em cinco. A equipa CAMBADA marcou três em três ganhando pela primeira
vez o campeonato nacional.

O desafio técnico (Technical Challenge) [2] obrigatório para RoboCup 2008, consistia jogar com uma
bola arbitrária (FIFA nº5). O desafio era composto por três tentativas onde eram utilizadas três bolas
diferentes, que foram colocadas em locais aleatórios. O software da visão existente apenas estava
preparado para detectar a bola através da sua cor laranja. Com o objectivo de resolver este desafio foi
necessário desenvolver um novo software de visão, a VisionThread [55]. Do ponto de vista do agente
apenas foi necessário utilizar a VisionThread em vez da visão convencional, sem efectuar nenhuma
alteração nos módulos de integração, controlo e decisão do agente.

Os dois episódios relatados demonstram a modularidade e flexibilidade da arquitectura de software,
controlo e coordenação, que foi especificada e implementada no âmbito desta dissertação.

Como conclusão final, importa salientar que a utilização da arquitectura especificada e implementada
no âmbito desta dissertação foi um sucesso, culminando na vitória do RoboCup 2008.

48



6.2 Trabalho futuro

Após a especificação e implementação da arquitectura de controlo e de coordenação dos agentes
CAMBADA e com extraordinário desempenho da equipa CAMBADA, torna-se inevitável defender
os tı́tulos alcançados em 2008, o bi-campeonato no Robótica 2008 e 1º lugar RoboCup 2008. Torna-
se igualmente importante propor novas estratégias e algoritmos nas áreas de visão por computador e
inteligência artificial.

Neste fase, a equipa CAMBADA necessita de novas ferramentas de debug e de logging. As fer-
ramentas de debug e logging são necessárias para uma avaliação e uma validação dos algoritmos
desenvolvidos, sejam eles de processamento dos sensores, integração no estado do mundo, de decisão
e de coordenação de alto nı́vel.

Com o objectivo de melhorar a arquitectura do agente especificada e desenvolvida com o presente
trabalho seria importante definir uma nova linguagem para implementação de papéis. Esta linguagem
permitiria o uso dos comportamentos implementados em C/C++. O principal requisito seria desen-
volver papéis ou parte deles e reutilizá-los noutros papéis. Um requisito obrigatório desta linguagem
seria o suporte para coordenação entre vários agentes. A geração desta linguagem deveria ser su-
portada por uma ferramenta gráfica. Nesta área existe trabalho desenvolvido pela equipa COPS da
Universidade Estugarda1 [18, 19] e pela empresa Gostai2, com a sua linguagem URBI [56, 57].

Um ponto de evolução obrigatório para equipa é o uso de passes durante o jogo. Para cumprir este
objectivo, o estado do mundo deve ser melhorado, aumentando a precisão da auto-localização e melho-
rando a integração da informação recolhida pelos sensores, nomeadamente a informação da posição e
velocidade da bola. A detecção dos adversários é importante pois permitirá detectar as zonas livres do
campo. O robô CAMBADA também precisará de algumas alterações, nomeadamente, um aumento
de velocidade, um melhoramento no sistema de retenção da bola e a possibilidade de efectuar um
remate rateiro da bola.

O aumento do campo, a ausência de um campo real e ausência de adversários, são três factores que
tornam necessário o desenvolvimento de um simulador. Este simulador, numa primeira fase, deve
apenas simular a recolha de informação sensorial e de actuação, mas, numa segunda fase, deverá
simular os sensores, nomeadamente a imagem recolhida pelas câmaras.

O agente treinador (Coach) não deverá apenas escolher a posição estratégia de cada agente. Por forma
a optimizar o desempenho da equipa CAMBADA durante o jogo, o Coach deverá adaptar o modelo
de jogo da equipa de acordo com o desenrolar do jogo.

1http://robocup.informatik.uni-stuttgart.de/
2http://www.gostai.com/
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Apêndice A

CAMBADA’2006: Team Description
Paper

55



CAMBADA’2006: Team Description Paper 

L. Almeida, J.L. Azevedo, G. Corrente, M.B. Cunha, A. Ferdowsi, 
J.P. Figueiredo, P. Fonseca, S. Lopes, R. Marau, N. Lau, P. Pedreiras, A. Pereira, 

 A. Pinho, J. Rocha, F. Santos, L. Seabra Lopes, V. Silva, J. Vieira 

Transverse Activity on Intelligent Robotics 
IEETA/DET – Universidade de Aveiro 

3810-193 Aveiro, Portugal 

Abstract. The CAMBADA middle-size robotic soccer team is described in this 
paper for the purpose of qualification to RoboCup’2006. This team was de-
signed and developed by the authors, from scratch, in the last three years. The 
players, completely built in-house, incorporate several innovations at the hard-
ware level, particularly the sensing and computational subsystems. At the soft-
ware level, cooperative sensing uses a real-time database implemented over a 
real-time Linux kernel. Previous experience of the team in the simulation 
league has been highly relevant. The paper focuses on recent advances on vi-
sion, localization and monitoring/debugging software as well as a new ultra-
sound-based localization system. 

1   Introduction 

CAMBADA 1 is the RoboCup middle-size league soccer team of the University of 
Aveiro. This project, started officially in October 2003, is funded by the Portuguese 
research foundation (FCT) 2. CAMBADA participated in RoboCup’2004 and in the 
last two editions of the Portuguese Robotics Festival (RoboCup’2004 and ’2005). 

The previous CAMBADA Team Description Paper [2], prepared for Rob-
Cup’2004, provides a detailed overview of the team, as it was initially designed and 
developed. Some aspects of its design were demonstrated in RoboCup’2004 while 
others were implemented since then. The present paper provides a shorter overview of 
the project and then focuses on recent developments. 

The CAMBADA players were designed and completely built in-house.  The base-
line for robot construction is a cylindrical envelope, with 485 mm in diameter, which 
allows for a team of 5 robots, according to the rules. The mechanical structure of the 
players is layered and modular (Figure 1). Each layer can easily be replaced by an 
equivalent one. The components in the lower layer, namely motors, wheels, batteries 
and an electromechanical kicker, are attached to an aluminium plate placed 8 cm 
above the floor. The second layer contains the control electronics. The third layer con-

                                                           
1 CAMBADA is acronym of Cooperative Autonomous Mobile roBots with Advanced Distrib-

uted Architecture; ‘cambada’ is also a Portuguese word for ‘band’ or ‘mob’. 
2 Project POSI/ROBO/43908/2002, partially funded by FEDER. 



tains a computer, at 22.5 cm from the floor. The players are capable of holonomic 
motion, based on three omni-directional roller wheels [5]. 

The main sensors in each player 
are two webcams, both equipped 
with wide-angular lenses and in-
stalled at approximately 80cm above 
the floor. Both cameras deliver 
320x240 YUV images at a rate of 20 
frames per second (fps). One of the 
cameras faces the field orthogonally, 
enabling to capture a 360 degrees 
view around the robot, approxi-
mately with a 1m radius. This so-
called omni-directional vision sys-
tem is used for obstacle avoidance 
and ball handling. 

The other camera points forward 
in the direction of the front of the 
robot, with  57º inclination  of   with 
respect to its vertical axis. This fron-
tal system  is  used  to  track  the ball 
at medium and long distances, as  
well  as  the  goals,  corner  posts  

 

Fig. 1. One of the CAMBADA players 

and players. All the objects of interest are detected using simple color-based analysis, 
applied in a color space obt ained from the YUV space by computing phases and 
modules in the UV plane. 

The robots computing system architecture follows the fine-grain distributed model 
[6]  where most of the elementary functions, e.g. closed-loop control of complex ac-
tuators, are encapsulated in small microcontroller-based nodes, connected through a 
network. A PC-based node is used to execute higher-level control functions and to 
facilitate the interconnection of off-the-shelf devices, e.g. cameras, through standard 
interfaces, e.g. USB or Firewire (Fig. 3). For this purpose, Controller Area Network 
(CAN), a real-time fieldbus typical in distributed embedded systems, has been chosen. 
This network is complemented with a higher-level transmission control protocol to 
enhance its real-time performance, composability and fault-tolerance, namely the 
FTT-CAN protocol (Flexible Time-Triggered communication over CAN) [3]. The 
communication among robots uses the standard wireless LAN protocol IEEE 802.11x 
profiting from large availability of complying equipment. 

The software system in each player is distributed among the various computational 
units. High level functions run on the computer, in Linux operating system with RTAI 
(Real-Time Application Interface). Low level functions run partly on the 
microcontrollers. A cooperative sensing approach based on a Real-Time Database 
(RTDB) [1,2,4,7,8] has been adopted. The RTDB is a data structure where players 
share their world models. It is updated and replicated in all players in real-time. 
    The high-level processing loop starts by integrating perception information 
gathered locally by the player. This includes information coming from the vision 
processes, which is stored in a Local Area of the RTDB, and odometry information 
coming from the holonomic base via FTT-CAN. After integration, the world state can 



be updated in the shared area of the RTDB. The next step is to integrate local 
information with information shared by teammates. This will be the basis for taking 
decisions according to a finite state machine. Each state is characterized by the 
behavior pattern that is executed. A very basic coordination mechanism is currently 
supported. According to this mechanism, the player that takes control of the ball is the 
player closest to the ball. Other players take strategic positions in the field based on 
their distances to the goals. We expect to improve the coordination mechanism as 
soon as localization capabilities are fully evaluated. This also depends on the 
availability of monitoring and debugging tools, which are under development. 

2   Real-time vision architecture 

A modular multi-process architecture was adopted for the vision software 
subsystem (Figure 2) [7]. For each camera, one process is automatically triggered 
whenever a new image frame is ready for dowload. The frame data are placed in 
shared image buffers, which are afterwards analyzed by the object detection proc-
esses, generically designated by proc_obj:x, x={1,2,…N}. These processes are encap-
sulated in separate Linux processes. Once started, each process gets a pointer to the 
most recent image frame available and starts tracking the respective object. Once fin-
ished, the resulting information (e.g. object detected or not, position, confidence) is 
placed in the real-time database. This database may be accessed by any other proc-
esses on the system, particularly for world state update. 

 

Fig. 2. Vision subsystem software architecture 

The activation of the distinct image-processing activities is carried out by a process 
manager. Each object tracking process (i) is associated with a period (Pi) and a phase 
(ϕi), expressed as integer number of image frames. For every frame f, the process 
manager activates all the processes that verify [(f-ϕi)% Pi ]=0. This allows allocating 
periods according to the specific attributes of each object (e.g., the ball is highly dy-
namic and is tracked in every frame while the relative goal position is less dynamic 
and can be tracked every four frames) as well as to de-phase them in the time domain, 
minimizing the mutual interference and consequently their response time and jitter.  

Scheduling of vision related processes relies on the real-time features of the Linux 
kernel, namely the FIFO scheduler and priorities in the range 15-50. At this level, 



Linux executes each process to completion, unless the process blocks or is preempted 
by other process with higher real-time priority. This ensures that the processes are 
executed strictly according to their priority with full preemption. The real-time fea-
tures of Linux are sufficient at this time-scale (periods multiple of 50ms). 

3   Information Integration and Localization 

Localization in the play field is a very basic requirement for implementing 
advanced coordination and cooperation strategies. Localization includes 
self-localization and localization of the ball and players. Localization is the main 
outcome of local and team-level information integration. As expected, odometry 
information is not enough to maintain sufficiently accurate localization information in 
CAMBADA [4]. After long distances or through collisions between players, it is very 
easy to reach positional error levels not acceptable for team coordination purposes. In 
collision-free runs of 100 m, we verified that the positional error grows roughly 
linearly with the distance travelled by the player. The error is around 1.5% to 2.% of 
the distance. Therefore, position errors of 2m can easily occur. 

 
Fig. 3. Effect of opportunistic vision-based calibration (example run) 

Localization in the currently working CAMBADA team is based on odometry 
information, updated in each iteration of the control loop, and calibrations performed 
based on vision information. The calibration mechanisms can be grouped as follows: 

− Opportunistic, based on a single landmark (goal, corner post, line) – not 
enough to derive the player’s position and orientation but enables calibration. 

− Opportunistic, based on two successively seen landmarks – enables to 
calculate position/orientation; error inherent to the vision system only. 

− Active – The player actively searches for two landmarks, e.g. by performing a 
full turn around itself. 

In opportunistic calibration, the vision-based positions/orientations are averaged 
with the internally kept values. Active localization is called in extreme situations, and 
the obtained values replace the previous values. When a change in internal values 
takes place, the new values are sent down to the odometry micro-controller. 

While monitoring/debugging tools are being developed, we have been resorting to 
time-consuming “manual” evaluation experiments. These experiments show that the 
position and orientation errors can be reduced to acceptable levels using the methods 



enumerated above. Figure 3 shows the localization performance in one experiment, in 
which the initial position error was set to 2.24m. We see that, after running for around 
17 meters and having performed 16 opportunistic calibrations, the position error was 
gradually reduced to ~1m. 

4   Ultrasound-based Localization 

In parallel with the vision-based localization capabilities described above, we have 
been developing an alternative/complementary localization system based on 
ultrasound sensors [9]. Advantage is taken from the fact that the goalkeeper is near the 
goal, being easy to obtain an absolute position in the field using visual information. 
The goalkeeper has one ultrasound emitter that transmits a pulse in a periodic way. 
The other robots have several ultrasound receivers that cover all the 360º around, and 
they reply a certain time after receiving the pulse from the goalkeeper. Each robot 
uses a different reply time in order to implement a time multiplexing of the answers. 
The goalkeeper knows the reply times of each robot, and in this way it can measure 
the propagation time of the sound to each robot and from this calculate the distance of 
each robot. The goalkeeper also has two ultrasonic sensors in order to measure the 
angle of the signal received from each robot. With these two values, it computes the x, 
y coordinates of the robots in the field. 

The ultrasound signals are processed using the DSP from Texas Instruments 2812. 
An initial proof-of-concept prototype was developed using simple algorithms. We use 
chirps as the transmitted signal and matched filters to detect the pulses. This way we 
managed to solve some of the problems related to multipath propagation and it is also 
possible to share the acoustic channel using different chirp signals for each robot. The 
first field experiments showed that the system works in real conditions measuring the 
coordinates of the robots with good accuracy. The system has full room to improve 
the accuracy of the measures by only changing the signal processing algorithms. 

5   Monitoring framework for multi-process/multi-agent systems 

Cambada robots run several processes and at the same time they interact with each 
other. They operate autonomously, taking many decisions per second based on sen-
sory information that changes dynamically and on shared information that is also sub-
ject to frequent changes. It is very hard to follow the robot’s reasoning based only on 
the external observation of its behavior. To aid this tuning and debugging process, a 
framework was developed to allow the visualization of the robots reasoning and syn-
chronize it with the observed robot’s behavior. 

Several constraints must be considered. The robot is executing several processes 
and in certain situations we should tune the behavior of the team as a whole instead of 
tuning individual robots. The framework is prepared to provide high-level information 
to the developer, useful for online observation, individual and team behavior tuning. 

During execution, robots may send information to a socket or to a local logfile. The 
following debug data is attached to every item of information: 



− Timestamp: Used to timeline the sequence and to synchronize information 
from several sources; 

− Category: A tree of categories may be defined to better organize and visualize 
information. A certain tree or subtree of categories can be hidden/displayed; 

− Level of detail: Useful to truncate the visualization at a certain level. 
Several types of records are allowed, like text, bookmarks, video images, etc. To 

synchronize logfiles from different robots two options are available: Use of the regular 
clock of the PC  with the inclusion of a NTP server in the team’s base station PC and 
NTP clients in the robots or the use of the RTAI distributed clock available from the 
RTAI layer in Linux. 

For file processing and reading, several features were implemented: 
− Multiple file opening and managing; 
− Time based interlace of records from the logfiles; this gives the user the feeling 

of one big logfile and allows to navigate the data on a unique time line. 
An application is being developed for reading and analyzing logfiles. 
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ABSTRACT 

This paper presents a new architecture for the Referee Box of the RoboCup Middle Size League competition. The 

Referee Box is the software that helps the human referee controlling the robotic soccer game. This architecture is based 

on a distributed and parallel paradigm. Three different modules were developed: server, control and viewer. 

KEYWORDS 

Distributed and Parallel Systems, Robot-Human Interaction, RoboCup Middle Size League. 

1. INTRODUCTION 

RoboCup [1] is a non-profit organization that promotes developments in the fields of Robotic and 

Artificial Intelligence [2]. This objective is reached by developing robots to play soccer. RoboCup is 

composed of several leagues like small size, middle size, simulation 2D, simulation 3D, and humanoid. The 

ultimate goal of RoboCup is: “by the year 2050, develop a team of fully autonomous humanoid robots that 

can win against the human world soccer champion team”. Robots of the Middle Size League (MSL) are 

around 80cm height and 50cm width. The game is played in a color coded environment to make lees difficult 

the image processing. The soccer field is green with 12m length and 8m width, white lines, and two goals 

(blue and yellow) [3]. 

Until 2004 the human referee communicated its decisions to teams using only speech. Now each game 

has the following actors: human referee team (main referee, assistant referee and referee box operator), base-

stations and robotic players. Base-station is a computer that stays out of field, connected to the Referee Box, 

used for communicating the referee’s decision to robotic players, received from referee box. Each team has 

their own base-station. 

During MSL games, the human referee team must communicate their decisions to the competing teams, 

the Referee Box makes that bridge. The Referee Box is the software, used to aid the referee team controlling 

the game and manages the communication with the teams. 

Currently the procedure during a game is the following: before starting the game every base-station must 

establish a connection to the referee box. The main referee communicates his decision to the referee box 

operator using speech and a whistle; the operator inputs the decision into the referee box software; the 

decision is transmitted to all connected base-stations and each one must communicate the decisions to their 

own robots. 

The current referee box software [4] is a single process without threads that merges the game 

management, the graphical interface and deals with the communication with the team’s base-stations. This 

software has architecture and implementation problems. The referee box waits for a pre-defined number of 

team connections and only at this moment starts up; the recovery, if one team looses connection, is made by 

writing the actual state in a file; doesn't support a bidirectional communication between referee box and 

teams. 

In this paper the proposed architecture is fully based on a distributed and parallel paradigm. This 

architecture is composed by three modules: Server, Control and Viewer. The Server Module manages the 

game and deals with the communication from teams. The Control Module is responsible for manage the 

Server Module through XML messages. The Viewer Module provides information of the game state (i.e. 



result, competing teams, time and score) for the public that see the game, like in a real soccer game. It is 

possible to have more than one module of the same type at the same time (Control and Viewer Modules). For 

example, we can split the game refereeing and use two different control modules, one for controlling the 

normal game flux and other to deal with substitutions. This also supports functionalities like managing 

substitutions, cards and goals. 

2. THE CURRENT REFEREE BOX ARCHITECTURE 

The current architecture of the referee box is a centralized solution (see Figure 1), mixing referee box 

management, graphical interface and communication with teams. In this architecture we can find 

disadvantages in implementation, usability. 

Figure 1 : Current architecture of referee box 

 
 

The referee box waits for a fixed number of teams and only starts up when all teams are connected. All 

referee decisions are converted to a character protocol and transmitted to connected teams. This character 

protocol is poor because it is based on a single character message used for the communication between 

referee box and teams (only this direction). The character protocol can not send information like time, cards 

or substitutions. Another other problem is related with disconnections of the teams. When this happen the 

graphical interface is frozen and the recovery is made by saving the referee state in a file. 

3. THE PROPOSED REFEREE BOX ARCHITECTURE 

The proposed architecture has been designed and implemented to provide new functions and support 

future function developments [5]. This objective was reached by three modules: RefBoxServer (Server 

Module), Control and Viewer (see Figure 2). 

Figure 2 : Proposed architecture of referee box 

 
 

The objective of Control Module is managing the Server Module by event interaction. The referee 

interacts with the Control Module through a graphical interface, as result of that interaction XML messages 

are sent to the Server Module. This use XML messages represent events like: start/stop all robots, fouls and 

register goals cards and substitutions. The Control receives from the Server the game state information. It is 

possible to use two (or more) different implementation of Control, for example: one for controlling the game 

(fouls, goal and cards) and other to deal with the substitutions. 



The Viewer Module is in charge of displaying the game state like an electronic placard used in a real 

soccer game. This module is connected to Server and receives periodically information like: name of the 

competing team, time, and score and current foul (see Figure 3). 

The Server Module is responsible for broadcasting decision events like: cards, goals, time or substitutions 

to teams and viewer. This module is also responsible for managing all game state information. The Server 

Module uses three TCPServer objects for dealing with teams, controls and viewers. The communications 

between Server/Control and Server/Team are bidirectional and unidirectional in case of connection of 

Server/Viewer. The Server/Control connection is used for controlling the game state. Control sends XML 

events to change the game state in the Server. Each XML message, received by TCPServer (for control 

purpose), is tagged (by TCPServer) and placed in a queue. 

The Server Module is waiting for message from the queue. After getting a message the Parser module is 

used to convert XML messages to event objects. These objects are used to update the RefBoxState (game 

state) (see Figure 4). The RefBoxState is a data structure that supports the storage of game, referee and team 

information. 

Figure 3 : Referee box Viewer graphical interface 

 
 



The RefBoxState is updated with events, in Figure 5 we can see how they are organized. All events are 

derived from an abstract base event called Event. We can configure each event to be forwardable or not and 

the method used to write it self. The write method can be configured in two modes: character mode (like the 

current referee box protocol) or XML protocol. 

TCPServer has one well-known port, (called connection channel) for accepting connections to the server. 

When one client connects to that port the server assigns at another port, for communication channel and 

creates a thread. For each new port a new thread is created for receiving data from socket [6]. When a 

message is received at a port, the correspondents thread tags the message and places it in the message queue. 

This tag is the port number of TCPServer. When the Send function is called for dispatching a message, it 

sends the information to all connected clients. 

Figure 4 : Referee box server 

 
 

Figure 5 : Events diagram 

 
 



4. CONCLUSION AND FUTURE WORK 

The proposed architecture is modular and distributed. These two features of the architecture causes: easy 

development of new modules for implementing new functions to the system. New functions have been added 

like substitutions and time report to this system. It also adds a XML protocol to make the communication 

between modules easier and flexible. With this approach the game management is more easy and natural. In a 

real game the communication between the main referee and the referee box operator is difficult because the 

noise on the field. This problem can be solved by the main referee control: player’s motion, goals, cards and 

game fouls; and the referee box operator can control the substitution. 

A possible limitation of the architecture is the fact that the interoperability between modules is made by a 

XML protocol. 

To future work, two new modules are in discussion. One is a new Control Module running in a Pocket PC 

for the main referee. The other module is a voice control to the referee box  
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Abstract. This paper describes a complete and efficient vision system developed
for the robotic soccer team of the University of Aveiro, CAMBADA (Coopera-
tive Autonomous Mobile roBots with Advanced Distributed Architecture). The
system consists on a firewire camera mounted vertically on the top of the robots.
A hyperbolic mirror placed above the camera reflects the 360 degrees of the field
around the robot. The omnidirectional system is used to find the ball, the goals,
detect the presence of obstacles and the white lines, used byour localization algo-
rithm. In this paper we present a set of algorithms to extractefficiently the color
information of the acquired images and, in a second phase, extract the informa-
tion of all objects of interest. Our vision system architecture uses a distributed
paradigm where the main tasks, namely image acquisition, color extraction, ob-
ject detection and image visualization, are separated in several processes that can
run at the same time. We developed an efficient color extraction algorithm based
on lookup tables and a radial model for object detection. Ourparticipation in the
last national robotic contest, ROBOTICA 2007, where we haveobtained the first
place in the Medium Size League of robotic soccer, shows the effectiveness of
our algorithms. Moreover, our experiments show that the system is fast and accu-
rate having a maximum processing time independently of the robot position and
the number of objects found in the field.

Keywords: Robotics; robotic soccer; computer vision; object recognition; omnidi-
rectional vision; color classification.

1 Introduction

After Garry Kasparov was defeated by IBM’s Deep Blue Supercomputer in May 1997,
forty years of challenge in the artificial intelligence (AI)community came to a success-
ful conclusion. But it also was clear that a new challenge hadto be found.

”By mid-21st century, a team of fully autonomous humanoid robot soccer players
shall win the soccer game, complying with the official rules of the FIFA, against the
winner of the most recent World Cup.” This is how the ultimategoal was stated by the
RoboCup Initiative, founded in 1997, with the aim to foster the development of artificial
intelligence and related field by providing a standard problem: robots that play soccer.

It will take decades of efforts, if not centuries, to accomplish this goal. It is not
feasible, with the current technologies, to reach this goalin any near term. However,

⋆ This work was supported in part by the Fundação para a Ciência e a Tecnologia (FCT).



this goal can easily create a series of well directed subgoals. The first subgoal to be
accomplished in RoboCup is to build real and simulated robotsoccer teams which play
reasonably well with modified rules. Even to accomplish thisgoal will undoubtedly
generate technologies with impact on broad range of industries.

One problem domain in RoboCup is the field of Computer Vision.Its task is to pro-
vide basic information that is needed to calculate the behavior of the robots. Especially
omnidirectional vision systems have become interesting inthe last years, allowing a
robot to see in all directions at the same time without movingitself or its camera [13,
12, 10, 11]. Omnidirectional vision is the method used by most teams in the Middle Size
League.

The main goal of this paper is to present an efficient vision system for processing
the video acquired by an omnidirectional camera. The systemfinds the white lines of
the playing field, the ball, goals and obstacles. The lines ofthe playing field are needed
because knowing the placement of the playing field from the robot’s point of view is
equal to know the position and orientation of the robot.

For finding the goals, the ball and the obstacles, lines are stretched out radially from
the center of the image and, if some defined number of pixels ofthe respective colors
are found, the system saves that position associated to the respective color. For finding
the white lines, color transitions from green to white are searched for.

For color classification, the first step of our system, a lookup table (LUT) is used.
Our system is prepared to acquire images in RGB 24-bit, YUV 4:2:2 or YUV 4:1:1
format, being necessary only to choose the appropriated LUT. We use the HSV color
space for color calibration and classification due to its special characteristics [1].

Fig. 1. The architecture of our vision system. It is based on a multi-process system being each
process responsible for a specific task.

This paper is organized as follows. In Section 2 we describe the design of our robots.
Section 3 presents our vision system architecture, explaining the several modules devel-



oped and how they are connected. In Section 4 we present the algorithms used to collect
the color information of the image using radial search lines. In Section 5 we describe
how the object features are extracted. Finally, in Section 6, we draw some conclusions
and propose future work.

2 Robot overview

CAMBADA players were designed and completely built in-house. The baseline for
robot construction is a cylindrical envelope, with 485 mm indiameter. The mechanical
structure of the players is layered and modular. The components in the lower layer
are the motors, wheels, batteries and an electromechanicalkicker. The second layer
contains the control electronics. The third layer containsa computer. The players are
capable of holonomic motion, based on three omni-directional roller wheels [2].

The vision system consists on a firewire camera mounted vertically on the top of
the robots. A hyperbolic mirror placed above the camera reflects the 360 degrees of the
field around the robot. This is the main sensor of the robot andit is used to find the ball,
the goals, detect the presence of obstacles and the white lines.

The robots computing system architecture follows the fine-grain distributed model
[7] where most of the elementary functions are encapsulatedin small microcontroller-
based nodes, connected through a network. A PC-based node isused to execute higher-
level control functions and to facilitate the interconnection of off-the-shelf devices, e.g.
cameras, through standard interfaces, e.g. Firewire. For this purpose, Controller Area
Network (CAN) has been chosen [3]. The communication among robots uses the stan-
dard wireless LAN protocol IEEE 802.11x profiting from largeavailability of comply-
ing equipment.

The software system in each player is distributed among the various computational
units. High level functions run on the computer, in Linux operating system with RTAI
(Real-Time Application Interface). Low level functions run partly on the microcon-
trollers. A cooperative sensing approach based on a Real-Time Database (RTDB) [4–6]
has been adopted. The RTDB is a data structure where players share their world models.
It is updated and replicated in all players in real-time.

3 Vision system architecture

A modular multi-process architecture was adopted for our vision system (see Fig. 1).
When a new frame is ready to download, one process is automatically triggered

and the frame is placed in a shared memory buffer. After that,another process analyzes
the acquired image for color classification, creating a new image with “color labels”
(an 8 bpp image). This image is also placed in the shared imagebuffer, which is af-
terward analyzed by the object detection processes, generically designated byProc[x],
x = 1, 2, . . .N . These applications are encapsulated in separate Linux processes. Once
started, each process gets a pointer to the most recent imageframe available and starts
tracking the respective object. Once finished, the resulting information (e.g. object de-
tected or not and position) is placed in the real-time database. This database may be
accessed by any other processes in the system, particularlyfor world state update.



The activation of the distinct image-processing activities is carried out by a process
manager. Scheduling of vision related processes relies on the real-time features of the
Linux kernel, namely the FIFO scheduler and priorities. At this level, Linux executes
each process to completion, unless the process blocks or is preempted by other pro-
cess with higher real-time priority. This ensures that the processes are executed strictly
according to their priority with full preemption.

4 Color extraction

Fig. 2. On the left, an example of a robot mask. White points represent the area that will be
processed. On the right, the position of the radial search lines.

Image analysis in the RoboCup domain is simplified, since objects are color coded.
Black robots play with an orange ball on a green field that has yellow and blue goals and
white lines. Thus, a pixel’s color is a strong hint for objectsegmentation. We exploit this
fact by defining color classes, using a look-up table (LUT) for fast color classification.
The table consists of 16777216 entries (224, 8 bits for red, 8 bits for green and 8 bits
for blue), each 8 bits wide, occupying 16 MB in total. If another color space is used,
the table size is the same, changing only the “meaning” of each component. Each bit
expresses whether the color is within the corresponding class or not. This means that a
certain color can be assigned to several classes at the same time. To classify a pixel, we
first read the pixel’s color and then use the color as an index into the table. The value (8
bits) read from the table will be called “color mask” of the pixel.

The color calibration is done in HSV (Hue, Saturation and Value) color space due to
its special characteristics. In our system, the image is acquired in RGB or YUV format
and then is converted to HSV using an appropriate conversionroutine.

There are certain regions in the received image that have to be excluded from anal-
ysis. One of them is the part in the image that reflects the robot itself. Other regions
are the sticks that hold the mirror and the areas outside the mirror. For that, we have an
image with this configuration that is used by our software. Anexample is presented in
Fig. 2. The white pixels are the area that will be processed, black pixels will not. With



this approach we can reduce the time spent in the conversion and searching phases and
we eliminate the problem of finding erroneous objects in thatareas.

To extract the color information of the image we use radial search lines to analyze
the color information instead of processing all the image. This approach has two main
advantages. First, that of accelerating the process due to the fact that we only process
about 30% of the valid pixels. Second, the use of omnidirectional vision difficults the
detection of the objects using, for example, their boundingbox. In this case, it is more
desirable to use the distance and angle. The proposed approach has a processing time
almost constant, independently of the information around the robot, being a desirable
property in Real-Time Systems. This is due to the fact that the system processes almost
the same number of pixels in each frame.

A radial search line is a line that starts in the center of the robot with some angle and
ends in the limit of the image (see the image on the right of Fig. 2). They are constructed
based on the Bresenham line algorithm [8, 9]. For each searchline, we iterate through
its pixels to search for two things: transitions between twocolors and areas with specific
colors.

We developed an algorithm to detect areas of a specific color which eliminates the
possible noise that could appear in the image. Each time thata pixel is found with a
color of interest, we analyze the pixels that follows (a predefined number) and if we
don’t find more pixels of that color we “forget” the pixel found and continue. When we
find a predefined number of pixels with that color, we considerthat the search line has
this color.

To accelerate the process of calculating the position of theobjects, we put the color
information found, in each search line, into a list of colors. We are interested in the
first pixel (in the respective search line) where the color was found and the number of
pixels with that color found in the search line. Then, using the previous information, we
separate the information of each color into sets that we named blobs (see Fig. 3). For
each blob some useful information is calculated that will help in the detection of each
object:

– average distance to the robot;

– mass center;

– angular width;

– number of pixels;

– number of green pixels between blob and the robot;

– number of pixels after blob.

The algorithm to search for the transitions between green pixels and white pixels is
described as follows. If a non green pixel is found, we will look for a small window in
the “future” and count the number of non green pixels and the number of white pixels.
Next, we look for a small window in the “past” and a small window in the future and
count the number of green pixels. If these values are greaterthan a predefined threshold,
we consider this point as a transition. This algorithm is illustrated in Fig. 4.



Fig. 3.An example of the blobs found in two images. On the left, the original images. On the right,
the blobs found. For each blob, we calculate useful information that is used later to calculate the
position of each object.
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Fig. 4. An example of a transition. “G” means green pixels, “W” meanswhite pixels and “X”
means pixels with a color different from green or white.

5 Object detection

The objects of interest that are present in the RoboCup environment are: a ball, two
goals, obstacles (other robots) and the green field with white lines. Currently, our system
detects efficiently all these objects with a set of simple algorithms that, using the color
information collected by the radial search lines, calculate the object position and / or
their limits in an angular representation (distance and angle).

The transition points detected in the color extraction phase are used for the robot
localization. All the points detected are sent to the Real-time Database, afterward used
by the localization process.

To detect the ball, we use the following algorithm:



1. Separate the orange information into blobs.
2. For each blob, calculate the information described in theprevious section.
3. Sort the orange blobs that have some green pixels before orafter the blob by de-

scending order, using their number of orange pixels as measure.
4. Choose the first blob as candidate. The position of the ballis the mass center of the

blob.

Regarding the goals, we are interested in three points: the center, the right post and
the left post. To do that, we use the following algorithm:

1. Ignore the information related to radial search lines which have both blue and yel-
low information (they correspond to the land marks).

2. Separate the valid blue and yellow information into blobs.
3. Calculate the information for each blob.
4. Sort the yellow and the blue blobs that have some green pixels before the blob by

descending order, using their angular width as measure.
5. Choose the first blob as candidate for each goal. Their position is given by the

distance of the blob relatively to the robot.
6. The right post and the left post is given by the position of the goal and the angular

width of the blob.

Another important information regarding the goals, is the best point to shoot. To
calculate it, we split the blob chosen into several slices, and choose the one with most
pixels blue or yellow. The best point to shoot is the mass center of the slice chosen.

To calculate the position of the obstacles around the robot,we use the following
algorithm:

1. Separate the orange information into blobs.
2. If the angular width of one blob is greater than 10 degrees,we split the blob into

smaller blobs, in order to obtain better information about obstacles.
3. Calculate the information for each blob.
4. The position of the obstacle is given by the distance of theblob relatively to the

robot. We are also interested in the limits of the obstacle and to obtain that we use
the angular width of the blob.

In Fig. 5 we present some examples of acquired images and their correspondent
segmented images. As we can see, the objects are correctly detected (see the marks in
images on the right).

6 Final remarks

This paper presents the omnidirectional vision system thathas been developed for the
CAMBADA team. We present several algorithms for image acquisition and processing.
The experiments already made and the last results obtained in the ROBOTICA 2007
competition prove the effectiveness of our system regarding the object detection and
robot self-localization.



Fig. 5.On the left, examples of original images. On the right, the corresponding processed images.
Marks in the blue and yellow goals mean the position of the goal (center) and the possible points
to shoot. The mark over the ball points to the mass center. Theseveral marks near the white lines
(magenta) are the position of the white lines. The cyan marksare the position of the obstacles.

The objects in RoboCup are color coded. Therefore, our system defines different
color classes corresponding to the objects. The 24 bit pixelcolor is used as an index
to a 16 MBytes lookup table which contains the classificationof each possible color in
a 8 bit entry. Each bit specifies whether that color lays within the corresponding color
class.



The processing system is divided in two phases: color extraction, using radial search
lines, and object detection, using specific algorithms. Theobjects involved are: a ball,
two goals, obstacles and white lines. The processing time and the accuracy obtained in
the object detection confirms the effectiveness of our system.

As future work, we are developing new algorithms for camera and color calibration,
in particular autonomous algorithms. Moreover, we are improving the presented algo-
rithms in order to use the shape of the objects instead of using only the color information
to improve the object recognition.
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Abstract. Interest on using mobile autonomous agents has been grow-
ing, recently, due to their capacity to cooperate for diverse purposes, from
rescue to demining and security. However, such cooperation requires the
exchange of state data that is time sensitive and thus, applications should
be aware of data temporal coherency. This paper describes the commu-
nication and coordination architecture of the agents that constitute the
CAMBADA (Cooperative Autonomous Mobile roBots with Advanced
Distributed Architecture) robotic soccer team developed at the Univer-
sity of Aveiro, Portugal. This architecture is built around a partially
replicated real-time database refreshed in the background, transparently
to the higher software layers. The paper presents the communication
mechanisms that were devised to support the real-time database man-
agement and focuses on the self-configuration of the protocol, according
to the current number of active team members.

1 Introduction

Coordinating several autonomous mobile robotic agents in order to achieve a
common goal is an active topic of research [3]. This problem can be found in
many robotic applications, either for military or civil purposes, such as search
and rescue in catastrophic situations, demining or maneuvers in contaminated
areas.

The technical problem of building an infrastructure to support the perception
integration for a team of robots and subsequent coordinated action is common
to the above applications. One recent initiative to promote research in this field
is RoboCup [5] where several autonomous robots have to play football together
as a team, to beat the opponent. We believe that researching ways to solve the
perception integration problem in RoboCup is also very relevant to real-world
applications.



Currently, the requirements posed on such teams of autonomous robotic
agents have evolved in two directions. On one hand, robots must move faster
and with accurate trajectories to close the gap with the dynamics of the pro-
cesses they interact with, e.g., a ball can move very fast. On the other hand,
robots must interact more in order to develop coordinated actions more effi-
ciently, e.g., only the robot closer to the ball should try to get it while other
robots should move to appropriate positions. The former requirement demands
for tight closed-loop motion control while the latter demands for an appropriate
communication system that allows building a global information base to support
cooperation.

In this paper we describe the communication and coordination architecture
of the robotic agents that constitute the CAMBADA middle-size robotic soccer
team of the University of Aveiro, Portugal, which is well suited to support the
requirements expressed above. The software architecture is based on a real-time
database in which the state values of other agents are updated transparently
to the higher software layers, using an adequate communication protocol. This
paper focuses on such protocol that dynamically adapts to the conditions of the
communication channel and to the current number of active agents in the team.
Particularly, some results are shown that illustrate the latter self-configuration
capability.

2 Computing/Communications Architecture

The computing architecture of the robotic agents is layered with two levels as
illustrated in Fig. 1. The higher level is built around a main processing unit
that handles both the external communication with other agents as well as the
local vision system. A distributed low-level sensing/actuating system handles
the robot attitude (holonomic motion control), odometry, kicking and power
monitoring. The latter one is out of the scope of this paper.

Fig. 1. CAMBADA robotic architecture

The main processing unit is currently implemented on a laptop that delivers
sufficient computing power while offering standard interfaces to connect the other



systems, namely USB, FireWire and WiFi. The wireless interface is either built-
in or added as a PCMCIA card. The laptop runs the Linux operating system
with the timeliness support necessary for time-stamping, periodic transmissions
and task temporal synchronization provided by a specially developed user-level
real-time scheduler, the Pman – Process Manager [1]. This approach provides
a sufficient timeliness support for soft real-time applications, such as multiple
robot coordination, and allows profiting from the better development support
provided by general purpose operating systems [2].

The agents that constitute the team communicate with each other by means
of an IEEE 802.11b wireless network as depicted in Fig. 2. The communication
is managed, i.e., using a base station, and it is constrained to using a single
channel, shared by, at least, both teams in each game. In order to improve the
timeliness of the communications, our team uses a further transmission control
protocol that minimizes collisions of transmissions within the team. Each robot
regularly broadcasts its own data while the remaining ones receive such data and
update their local structures. Beyond the robotic agents, there is also a coaching
and monitoring station connected to the team that allows following the evolution
of the robots status on-line and issuing high level team coordination commands.

Fig. 2. Global communications architecture

3 RTBD - The Real-Time Database

Similarly to other teams [4, 6], our team software architecture emphasizes cooper-
ative sensing as a key capability to support the behavioral and decision-making
processes in the robotic players. A common technique to achieve cooperative
sensing is by means of a blackboard [7, 8], which is a database where each agent
publishes the information that is generated internally and that maybe requested,
by others. However, typical implementations of this technique seldom account
for the temporal validity (coherence) of the contained information with adequate
accuracy. This is a problem when robots move fast because their state informa-
tion degrades faster, too. Without adequate refreshing, the data in a blackboard
may easily lose temporal validity thus becoming too old to be useful. Another
problem of typical implementations is that they are based on the client-server
model and thus, when a robot needs a datum, it has to communicate with the
server holding the blackboard, introducing an undesirable delay. To avoid this



delay, we use two features: firstly, the dissemination of the local state data is
carried out using multicast, according to the producer-consumer cooperation
model, secondly, we replicate the blackboard according to the distributed shared
memory model [9]. In this model, each node has local access to all the process
state variables that it requires. Those variables that are remote have a local
image that is updated automatically in the background by the communication
system (Fig. 3).

Fig. 3. Each agent broadcasts periodically its subset state data that might be required
by other agents

We call this replicated blackboard the Real-Time DataBase (RTDB), simi-
larly to the concept presented in [10], which holds the state data of each agent
together with local images of the relevant state data of the other team mem-
bers. A specialized communication system triggers the required transactions at
an adequate rate to guarantee the freshness of the data.

4 Communication Among Agents

As referred in section 2, agents communicate using an IEEE 802.11 network,
sharing a single channel with the opposing team and using managed commu-
nication (through the access point). This raises several difficulties because the
access to the channel cannot be controlled [11] and the available bandwidth is
roughly divided by the two teams.

Therefore, the only alternative left for each team is to adapt to the current
channel conditions and reduce access collisions among team members. This is



achieved using a dynamic adaptive TDMA transmission control, with a prede-
fined round period called team update period (Ttup) that sets the responsiveness
of the global communication. Within such round, there is one single slot allocated
to each running team member so that all slots in the round are separated as much
as possible (Fig. 4). This allows calculating the target inter-slot period Txwin as
Ttup/N , where N is the number of running agents. The transmissions gener-
ated by each running agent are scheduled within the communication process,
according to the production periods specified in the RTDB records. Currently
a rate-monotonic scheduler is used. When the respective TDMA slot comes, all
currently scheduled transmissions are piggybacked on one single 802.11 frame
and sent to the channel. The required synchronization is based on the reception
of the frames sent by the other agents during Ttup. With the reception instants
of those frames and the target inter-slot period Txwin it is possible to generate
the next transmission instant. If these delays affect all TDMA frames in a round,
then the whole round is delayed from then on, thus its adaptive nature. Fig. 5
shows a TDMA round indicating the slots allocated to each agent and the adap-
tation of the round duration. The adaptive TDMA protocol was first proposed
by the authors in [12].

Fig. 4. TDMA round

Fig. 5. Adaptive TDMA round

When a robot transmits at time tnow it sets its own transmission instant
tnext = tnow + Ttup, i.e. one round after. However, it continues monitoring the
arrival of the frames from the other robots. When the frame from robot k arrives,
the delay δk of the effective reception instant with respect to the expected instant
is calculated. If this delay is within a validity window [0,∆], with ∆ being a global
configuration parameter, the next transmission instant is delayed according to
the longest such delay among the frames received in one round (Fig. 5), i.e.,



tnext = tnow + Ttup + maxk(δk)

On the other hand, if the reception instant is outside that validity window,
or the frame is not received, then δk is set to 0 and does not contribute to update
tnext.

The practical effect of the protocol is that the transmission instant of a
frame in each round may be delayed up to ∆ with respect to the predefined
round period Ttup. Therefore, the effective round period will vary between Ttup

and Ttup + ∆. When a robot does not receive any frame in a round within the
respective validity windows, it updates tnext using a robot specific configuration
parameter βk in the following way

tnext = tnow + Ttup + βk with 0 ≤ βk ≤ ∆

This is used to prevent a possible situation in which the robots could all
remain transmitting but unsynchronized, i.e. outside the validity windows of
each other, and with the same period Ttup. By imposing different periods in this
situation we force the robots to resynchronize within a limited number of rounds
because the transmissions will eventually fall within the validity windows of each
other.

One of the limitations of the adaptive TDMA protocol as proposed in [12] is
that the number of team members was fixed, even if the agents were not active,
causing the use of Txwin values smaller than needed. Notice that a smaller Txwin

increases the probability of collisions in the team. Therefore, a self-configuration
capability was added to the protocol, to cope with variable number of team
members. This is the specific mechanism proposed in this paper, which supports
the dynamic insertion / removal of agents in the protocol. Currently, the Ttup

period is still constant but it is divided by the number of running agents at
each instant, maximizing the inter-slot separation between agents Txwin at each
moment.

However, the number of active team members is a global variable that must
be consistent so that the TDMA round is divided in the same number of slots
in all agents. To support the synchronous adaptation of the current number of
active team members a membership vector was added to the frame transmitted
by each agent in each round, containing its perception of the team status.

When a new agent arrives it starts to transmit its periodic information in
an unsynchronized mode. In this mode all the agents, including the new one,
continue updating its membership vector with the received frames and continue
refreshing the RTDB shared areas, too. The Txwin value, however, is not yet
adapted and thus the new agent has no slot in the round. When all the team
members reach the same membership vector, the number of active team members
is updated, so as the inter-slot period Txwin. The protocol enters then in the scan
mode in which the agents, using their slightly different values of Ttup, rotate their
relative phases in the round until they find their slots. From then on, all team
members are again synchronized. The removal of an absent agent uses a similar
process. After a predefined number of rounds without receiving frames from a



given agent, each remaining member removes it from the membership vector.
The change in the vector leads to a new agreement process similar to described
above.

Fig. 6 shows an example of the self-reconfiguration process with the dynamic
insertion and removal of agents. It shows the instants at which the packets from
the several agents in a team are received in a monitoring station, relative to
the start of the round in an arbitrary agent (agent 2 in this case). The line on
top shows the reception instants of that agent, which give us an indication of
the effective TDMA round duration. Before point A, agent 2 is alone, using a
TDMA round with 1 single slot, and at that point agent 4 joins the team and
starts transmitting. Agent 2 detects these transmissions and divides the TDMA
round in 2 slots, one for each agent. Naturally, the transmissions of agent 4 are
outside the respective validity window, thus agent 4 uses a sliding relative phase
until it reaches the right slot, at which point it stays synchronized with the team
(near flat portions of the graph). At point B, agent 4 left the team, i.e., stopped
transmitting. Agent 2 detected this situation and reconfigured the TDMA round
to 1 single slot again. The remaining situations are all similar, with agent 4 re-
joining at point C and agent 5 at point D, who leave the team at points E and
F, respectively. From D to E the TDMA round is configured to 3 slots and after
the withdrawal of agent 4, it is reconfigured to 2 slots again. Notice that the
mechanisms are fully distributed and all agents execute exactly the same code.

Fig. 6. Self-configuration of the slot time according to the number of running agents

5 Coordinating Multiple Soccer Agents

The purpose of the communication protocol described above is to support the
management of the RTDB, which is the central element for sharing information
and thus for coordination of the team of agents. In this section we present a brief
reference to some of the coordinated behaviors that are currently implemented
on top of the RTDB, thus highlighting the effectiveness of the communication.



The team can be in several different play modes, from kick off to free kick,
throw in, corner kick, etc., decided by the referee, which are broadcast among
the team by the remote station through the RTDB.

The RTDB also supports the integration of the individual agent perceptions
to improve their knowledge about the current positions and velocities of the
others robots and of the ball. It is very important for our coordination model to
keep an accurate estimation of the absolute position of the ball by each robot.
The role assignment algorithm is based on the absolute position of the robot, its
team mates and ball. Each robot determines its self localization and ball position
through its local vision system and shares it with the others through the RTDB.

Communication is also used to convey the coordination status of each agent
allowing robots to detect uncoordinated behaviors, for example, several robots
with the same exclusive role, and to correct this situation reinforcing the relia-
bility of coordination algorithms.

6 Conclusion

Cooperating robots is a field currently generating large interest in the research
community. RoboCup is one example of an initiative developed to foster research
in that area.

This paper described the computing and communication architecture of the
CAMBADA middle-size robotic soccer team being developed at the University of
Aveiro. Such architecture is based on a partially replicated real-time database,
i.e., the RTDB, which includes local state variables together with images of
remote ones. These images are updated transparently to the application software
by means of an adequate real-time management system. Moreover, the RTDB is
accessible to the application using a set of non-blocking primitives, thus yielding
a fast data access.

Earlier work from the authors led to the development of a wireless com-
munication protocol that reduces the probability of collisions among the team
members. The protocol called adaptive TDMA, adapts to the current channel
conditions, particularly accommodating periodic interference patterns. In this
paper the authors extended that protocol with on-line self-configuration capa-
bilities that allow reconfiguring the slots structure of the TDMA round to the
actual number of active team members, further reducing the collision probabil-
ity. This paper ends with a brief reference to global team coordination based on
the RTDB concept, using the described communication protocol.

Future work includes the further dynamic reconfiguration of the TDMA
round interval, i.e., the team update period, according to the communication
channel load and current number of agents in the team.
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J. L. Azevedo, N. Lau, G. Corrente, A. Neves, M. B. Cunha, F. Santos, 
A. Pereira, L. Almeida, L. S. Lopes, P. Pedreiras, J. Vieira, 
P. Fonseca, D. Martins, N. Figueiredo, J. Puga, J. Taborda 

Transverse Activity on Intelligent Robotics 
IEETA/DETI – Universidade de Aveiro 

3810-193 Aveiro, Portugal 

Abstract. The CAMBADA middle-size robotic soccer team is described in this 
paper for the purpose of qualification to RoboCup’2007. The robots have been 
developed from scratch in the last four years and, unlike other approaches, 
using home-made mechanical parts and basic electronic modules. Previous 
experience of some elements of the team in the RoboCup Simulation League 
has been highly relevant particularly in the design of the high-level 
coordination and control framework. 

1 Introduction 

CAMBADA 1 is the RoboCup middle-size league soccer team of the University of 
Aveiro, Portugal. This project started officially in October 2003 and, since then, the 
team has participated in three RoboCup competitions, namely, RoboCup’2004, 
RoboCup’2006, DutchOpen’ 2006, and in the last three editions of the Portuguese 
Robotics Festival (Robotica2004, Robotica2005 and Robotica2006). 

This paper describes the current development stage of the team and is organized as 
follows: Section 2 briefly presents the robot platform. Section 3 describes the general 
architecture of the robots focusing both on low-level control hardware aspects and on 
the general software architecture. Section 4 presents the current version of the vision 
system. Section 5 briefly describes the high-level coordination and control 
framework. Finally, section 6 concludes the paper. 

2 Robot Platform 

The CAMBADA robots were designed and completely built in-house. Each robot 
is built upon a circular aluminum chassis (with roughly 485 mm diameter), which 
supports three independent motors (allowing for omnidirectional motion), an 
electromagnetic kicking device and three NiMH batteries. The remaining parts of the 
robot are placed in three higher layers, namely: the first layer upon the chassis is used 
to place all the electronic modules such as motor controllers; the second layer 

                                                           
1 CAMBADA is an acronym of Cooperative Autonomous Mobile roBots with Advanced 

Distributed Architecture. 



contains the PC (currently a 12" notebook based on an Intel Core2Duo processor); 
finally on the top of the robots stands an omnidirectional vision system consisting of a 
standard low cost camera and an hyperbolic mirror (AIS Fraunhofer-Gesellschaft). 

The mechanical structure of the robot is highly modular and was designed to 
facilitate maintenance. It is mainly composed of two tiers: 1) the mechanical section 
that includes the major mechanical parts attached to the aluminum plate (e.g. motors, 
kicker, batteries); 2) the electronic section that includes control modules, the PC and 
the vision system. These two sections can be easily separated from each other, 
allowing an easy access both to the mechanical components and to the electronic 
modules.  

 

  
 

Fig. 1. The CAMBADA robot 

3 General Architecture of the Robots 

The general architecture of the CAMBADA robots has been described in [1], [2]. 
Basically, the robots architecture is centered on a main processing unit that is 
responsible for the higher-level behavior coordination, i.e. the coordination layer. 
This main processing unit (a PC) processes visual information gathered from the 
vision system, executes high-level control functions and handles external 
communication with the other robots. This unit also receives sensing information and 
sends actuating commands to control the robot attitude by means of a distributed low-
level sensing/actuating system. The PC runs the Linux operating system over the 
RTAI (Real-Time Applications Interface [6]) kernel, which provides time-related 
services, namely periodic activation of processes, time-stamping and temporal 
synchronization. The communication among team robots uses an adaptive TDMA 
transmission control protocol [3], on top of IEEE 802.11b, that reduces the 
probability of transmission collisions between team mates thus reducing the 
communication latency. 

The low-level sensing/actuation system (Fig. 2) is implemented through a set of 
microcontrollers interconnected by means of a network. For this purpose, Controller 
Area Network (CAN) [5], a real-time fieldbus typical in distributed embedded 
systems, has been chosen. This network is complemented with a higher-level 
transmission control protocol to enhance its real-time performance, composability and 



fault-tolerance, namely the FTT-CAN protocol (Flexible Time-Triggered 
communication over CAN) [4],[8]. The low-level sensing/actuation system executes 
four main functions, namely, Motion control, Odometry, Kicking and System 
monitoring. The Motion control function provides holonomic motion using 3 DC 
motors. The Odometry function combines the encoder readings from the 3 motors and 
provides coherent robot displacement information that is then sent to the coordination 
layer. The Kick function includes the control of an electromagnetic kicker and of a 
ball handler to dribble the ball. Finally, the System monitor function monitors the 
robot batteries as well as the state of all nodes in the low-level layer. 
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Fig. 2. The CAMBADA hardware architecture. 

The low-level control layer connects to the coordination layer through a gateway, 
which filters interactions within both layers, passing through the information that is 
relevant across the layers, only. 

3.1 Hardware 

The low-level layer has a set of nodes, built around a common module, using 
specialized interfacing to the robot I/O devices. These nodes are interconnected with a 
CAN network operating at a bit rate of 250Kbps. A gateway interconnects the CAN 
network to the PC at the high-level layer either through a serial port or a USB port, 
operating at 115Kbaud in any case.  

All modules are based on the same underlying hardware, e.g. a PIC18Fxx8 
Microchip [7] microcontroller (@40MHz, i.e., 10 MIPS) which, along with a set of 
useful peripherals, such as timers, PWM generators, analog to digital converter and 
serial communications, also integrates a CAN controller. The basic structure of every 
module includes the CAN port to connect to the network and also includes a 115 
Kbps RS232 serial port, which is useful both to program the module firmware and for 
debugging purposes.  

One important characteristic of the CAMBADA hardware design is the galvanic 
decoupling between the logic blocks and the power blocks carried out through opto-
couplers and/or isolation amplifiers. Along with improved reliability of the whole 
system it prevents serious damages in expensive equipment (such as the notebook in 
the high-level layer) whenever any electric problem occurs in the power block. The 



drawback of this solution is the need of an extra battery for the logic part of the 
system. 

The main functions implemented in the low-level layer are described in the 
following. 

Motion control 

The robot holonomic motion is obtained combining the speed of 3 DC motors 
(24V-150W), each with its own speed controller. Each of these controllers is a distinct 
module of the whole distributed architecture implementing a PI closed loop speed 
control. It takes as inputs the motor shaft displacement, obtained through a quadrature 
incremental optical shaft encoder coupled to the motor, and the speed set-point. The 
computation of the three set-points needed to obtain a coherent robot motion is carried 
out by another module called holonomic. It receives the robot velocity vector (speed, 
direction and heading) from the higher-level (through the gateway) and translates it 
into individual set-points that are then sent to each motor controller via CAN 
messages. 

Odometry 

The odometry function of the robot is accomplished through the combination of 4 
basic functions: the reading of the 3 encoders plus their combination to generate 
coherent displacement information (∆x, ∆y, ∆θ). The reading of each encoder is 
naturally allocated to each motor module, using the same readings as those used by 
the speed feedback control. The combination of the readings is carried out in a 
specific module, the odometry node, which receives the encoder readings from the 
motors and sends the results to the gateway via CAN messages. 

Kicking control 

The kicking system is based on an electromagnetic kicker that has been developed 
by the team for these robots. It allows the higher-level coordination functions to 
choose one of two kicking modes: direct shooting or lofted kick. Effective control of 
the kick power is also implemented. The kicking system also includes two IR sensors 
implemented as an IR barrier which is used to detect the ball when it is in the kicking 
position, thus avoiding false triggering; and a short distance IR sensor (less than 50 
cm) which can be used, in addition to visual information, to determine more precisely 
the distance between the front of the robot and the ball. 

Another feature implemented in this module is an active ball-handler system whose 
purpose is to dribble the ball throughout the game field in accordance with the 
RoboCup MSL rules. It is implemented as a quadrature incremental encoder, to 
measure the ball movement thus providing ball rotation feedback control. 

System monitoring 

This functionality has two main purposes: measure batteries voltage and monitor 
modules run-time status. The latter requires this function to be present in all modules, 
tracking reset situations, namely power-up reset, warm reset, brown-out reset (caused 
by undervoltage spikes) and watchdog reset, as well as answering to I’m alive 
requests issued by the high-level layer. Battery voltage monitoring is implemented in 
the same module as the kicker, since it already includes specific voltage monitoring 
hardware. The battery monitoring function measures, in real-time, the voltage of the 



three NiMH batteries used in the robot, namely 2x12V for the power blocks of motor 
controllers and kicker, plus a 9.6V for the logic blocks.  

The information gathered by the system monitoring function, in all nodes, is sent to 
the high-level layer for remote monitoring purposes. 

3.2 Software 

The software system in each robot is distributed among the various computational 
units. High level functions run on the PC, while low level functions run on the 
microcontrollers. A cooperative sensing approach based on a Real-Time Database 
(RTDB) [1], [3], [9] has been adopted. The RTDB is a data structure where the robots 
share their world models. It is updated and replicated in all players in real-time.  

The high-level processing loop starts by integrating perception information 
gathered locally by the robot. This includes information coming from the vision 
system and odometry information coming from the low-level layer, both stored in a 
Local Area of the RTDB. After integration, the world state can be updated in the 
shared area of the RTDB. The next step is to integrate local information with 
information shared by team-mates, which is updated by a process that handles the 
communication with the other robots via an IEEE 802.11b wireless connection. The 
RTDB is then used by another set of processes that define the specific robot behavior 
for each instant, generating commands that are passed down to the low-level control 
layer. 

4 Vision System 

The current version of the vision system is based on a catadioptric configuration 
implemented with a low cost Fire-wire web-camera (BCL 1.2 Unibrain camera with a 
¼'' CCD sensor and a 3.6mm focal distance lens) and a hyperbolic mirror. The camera 
delivers 640x480 YUV images at a rate of 30 frames per second.  

The vision software has been implemented following a modular multi-process 
architecture (Fig. 3).  

 
Fig. 3. Architecture of the vision system. 

When a new frame is ready to be read, the acquisition process is automatically 
triggered and the frame is placed in a shared memory buffer. Another process will 



then analyze the acquired image for color classification, creating a new one with 
"color labels'' (an 8 bit per pixel image). This image is also placed in the shared image 
buffer, which is afterwards analyzed by the object detection processes, generically 
designated by Proc[x] , x={0, 1,... N-1}. The output of the detection processes is 
placed in the real-time database (RTDB) which can be accessed by any other 
processes on the system, such as the world state update. The activation of the different 
image-processing processes is carried out by means of a process manager [9].  

Image analysis in the RoboCup domain is simplified, since objects are color coded. 
This fact is exploited by defining color classes, using a look-up-table (LUT) for fast 
color classification. The table consists of 16777216 entries (24 bits: 8 bits for red, 8 
bits for green and 8 bits for blue), each 8 bits wide, occupying 16 MB in total. The 
classification of a pixel is carried out using its color as an index into the table. The 
color calibration is done in HSV (Hue, Saturation and Value) color space. In the 
current setup the image is acquired in RGB or YUV format and is then converted to 
HSV using an appropriate conversion routine.  

The image processing software uses radial search lines to analyze the color 
information. The regions of the image that have to be excluded from analysis (such as 
the robot itself, the sticks that hold the mirror and the areas outside the mirror) are 
ignored through the use of a previously generated image mask.  

The objects of interest (a ball, two goals, obstacles and the green to white 
transitions) are efficiently detected through algorithms that, using the color 
information collected by the radial search lines, calculate the object position and/or 
their limits in an angular representation (distance and angle). The green/white 
detected transition points, that are at a distance smaller than a predefined value, are 
stored in the RTDB for latter use by the robot self-localization process.  

The relationship between image pixels and real world distances is obtained through 
an analytical method developed by the team (to be published soon) that explores a 
back-propagation ray-tracing approach and the mathematical properties of the mirror 
surface. 

5 High-level coordination and control 

The high-level decision is built around three main modules: sensor fusion, basic 
behaviors and high-level decision and cooperation. The objective of the sensor fusion 
module is to gather the noisy information from the sensors and from other robots and 
update the World State database that will be used by the high-level decision and 
coordination. The basic behaviors module provides the set of primitives that the 
higher-level decision modules use to control the robot. It is essential to provide those 
modules with a good set of alternatives, each of which should be as efficient as 
possible. The high-level decision module is responsible for the analysis of the current 
situation and for the performing of decision-making processes carried out by each 
player in order to maximize, not only the performance of its actions, but also the 
global success of the team.  

The sensor fusion module has recently been redesigned, in what concerns its 
interface with the other modules, in order to get a common view over all the sensor 
measures. Now all sensors write into adequate structures, but only the sensor fusion 
module is allowed to update the World State. A recent, and very important, 



development as been the integration into the sensor fusion module of a self-
localization lines-based engine, based-on the one described in [12], that allows a high 
level of confidence in the robots estimated self-position. 

The new design of the vision system, which is now omnidirectional, has allowed 
the development of a new set of basic behaviors. The previous vision system was 
based on two cameras, one facing the field orthogonally, enabling the capture of a 360 
degrees view around the robot with roughly 1m radius, and the other pointing forward 
in the direction of the front of the robot. With that vision system the robot could sense 
far objects in front of it, but had a very limited view of its surrounding area in all 
other directions. As a consequence most of the movements had to be done with the 
robot turned to the target point. Using the new vision system, the robot can accurately 
move towards any given point at any given orientation. Several experiments of 
different alternatives have been carried out and a new set of optimized basic behaviors 
is now available. 

The high-level decision module currently uses state-machine based modeled roles 
that switch the basic behavior of the robot in accordance with the current situation and 
the previous state. Coordination is achieved by the definition of formations of 
different roles [11] and by a higher-level module where role switching is performed. 
The concepts of roles, formations and set-plays have previously been used in the 
RoboCup in some Simulation and Middle-Size teams. The coordination is in the 
process of integrating the information coming from the new self-localization engine, 
which allows the use of coordination techniques like SBSP [10]. In some cases, such 
as kick-ins or corners, specific set-plays are activated where a coordinated and 
synchronized set of basic behaviors is performed by all team robots. 

6 Conclusion 

This paper described the current development stage of the CAMBADA robots. Since 
the last submission of qualification material (in January/2006) several major 
improvements have been carried out, namely: the implementation of a new vision 
system based on a single camera in a catadioptric configuration; the development of a 
new tool to calibrate image colors based on the HSV color space; the implementation 
of vision software processing based on radial sensors; the development of an 
analytical method to get the relationship between image pixels and real world 
distances; the implementation and integration of a self-localization algorithm; the re-
design of the higher-level coordination and control software; a new kicking device 
with kick mode selection and power control; the replacement of the lead-acid batteries 
by smaller and lighter NiMH which allowed for, roughly, 30% robot weight 
reduction. 
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Abstract— This paper presents the architecture, 

information sharing and team coordination methodologies of 

the CAMBADA RoboCup middle-size league (MSL) team. 

An overview of the software architecture and individual 

decision capabilities of the agents is also presented. The 

information sharing and integration strategy is designed to 

both improve the accuracy of world models and to support 

the team coordination. Part of the coordination model is 

based on previous work in the Simulation League, which has 

been adapted to the MSL environment. With the described 

design, CAMBADA reached the 1st place in the Portuguese 

Robotics Open in 2007 and the 5th place in RoboCup 2007 

world championship. 

I. INTRODUCTION 

OBOTIC soccer is currently one of the most popular 

research domains in the area of multi-robot systems. 

The RoboCup rules and regulations for different robotic 

soccer modalities are widely accepted and followed. Many 

robotic soccer projects use RoboCup competitions for 

testing and validation of the adopted approaches. 

In the context of RoboCup, the so-called “middle-size 

league” (MSL) is one of the most challenging, since 

robotic players must be completely autonomous and must 

play in a field of 12 m × 18 m [13]. In this modality, teams 

are composed of at most six wheeled robots with a 

maximum height of 80 cm and a maximum weight of 40 

Kg. The rules of this modality establish several constraints 

to simplify perception and world modeling. In particular, 

the ball is orange, the field is green, the field lines are 

white, the players are black, etc. The duration of a game is 

30 minutes, not including a half-time interval of 5 minutes. 

The referee orders are communicated to the teams using an 

application called “referee box”. The referee box sends the 

referee orders to the team through a wired LAN TCP link 

connected to the base station of each team. It is the team's 

responsibility to communicate these orders to the robots 

inside the field via standard wireless LAN. No human 

interference is allowed during the games except for 

removing malfunctioning robots and re-entering robots in 

the game. 

Building a team for the MSL is a very challenging task, 

both at the hardware and software level. To be 

competitive, robots must be robust and fast and possess a 

comprehensive set of sensors. At the software level these 

robots must have an efficient set of low-level behaviors 
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and must coordinate themselves to operate as a team. 

Coordination in the MSL league is usually achieved 

through the assignment of different roles to the robots. 

Typically there is, at least, an attacker, a defender, a 

supporter and a goalie [21][2]. As the maximum number of 

robots in each team increases (it is currently 6) and the 

field becomes larger, more sophisticated coordination 

techniques must be developed. 

In the RoboCup simulation league teams have been 

using coordination schemes based on a coordination layer 

that includes Strategy, Tactics and Formations [17][20], 

coordination graphs [10] and reinforcement learning [19]. 

CAMBADA is the RoboCup middle-size league soccer 

team of the University of Aveiro (Fig. 1). This project 

started officially in October 2003 and was initially funded 

by the Portuguese research foundation (FCT). Since then, 

CAMBADA participated in several national and 

international competitions, including RoboCup world 

championships, the European "RoboLudens” and the 

annual Portuguese Open Robotics Festival. 

The CAMBADA project aims at fostering the Aveiro 

university research at several levels of the MSL challenge. 

Research conducted within this project has led to 

developments at the hardware level [3], infrastructure level 

[1][15][16], vision system [14][5], multi-agent monitoring 

[9] and high-level decision and coordination [4]. This 

paper is focused on the last of these components. 

This paper is organized as follows: Section II presents 

the hardware and software architectures of CAMBADA 

players and provides details on the main software 

components involved in individual decisions of the 

players, namely roles and behaviors. Section III describes 

how players share information with teammates and how 

they integrate shared information. Section IV describes the 

adopted coordination methodologies. Section V presents 

the latest results and concludes the paper. 

 

 
 

Fig. 1  CAMBADA robotic team 
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II. PLAYER ARCHITECTURE 

A. Hardware Architecture 

The CAMBADA robots (Fig. 1) were designed and 

completely built in-house. The baseline for robot 

construction is a cylindrical envelope, with 485 mm in 

diameter. The mechanical structure of the players is 

layered and modular. Each layer can easily be replaced by 

an equivalent one. The components in the lower layer, 

namely motors, wheels, batteries and an electromechanical 

kicker, are attached to an aluminum plate placed 8 cm 

above the floor. The second layer contains the control 

electronics. The third layer contains a laptop computer, at 

22.5 cm from the floor, and an omni-directional vision 

system, close to the maximum height of 80cm. The players 

are capable of holonomic motion, based on three omni-

directional roller wheels. The mentioned vision system 

allows detecting objects (ball, players, goals) and field 

lines on a radius of nearly 5m around each player. Besides 

vision, each player includes wheel encoders, battery status 

sensors and, for detecting if the ball is kickable, an infra-

red presence sensor. 

The robots computing system architecture follows the 

fine-grain distributed model [11] where most of the 

elementary functions, e.g. closed loop control of complex 

actuators, are encapsulated in small microcontroller based 

nodes, connected through a network. A laptop node is used 

to execute higher-level control functions and to facilitate 

the interconnection of off-the-shelf devices, e.g. cameras, 

through standard interfaces, e.g. USB or Firewire (Fig. 2). 

For this purpose, Controller Area Network (CAN), a real-

time fieldbus typical in distributed embedded systems, has 

been chosen. This network is complemented with a higher-

level transmission control protocol to enhance its real-time 

performance, composability and fault-tolerance, namely 

the FTT-CAN protocol (Flexible Time-Triggered 

communication over CAN) [7]. 

In the middle-size league, inter-robot communication and 

communication between the team’s base station and the 

robots is extremely necessary for the team to maintain a 

coordinated behavior. The communication among robots 

and to the base station uses the standard wireless LAN 

protocol IEEE 802.11x profiting from large availability of 

complying equipment. The base station is connected to the 

referee box through a wired LAN TCP link. 

 

B. Software Architecture 

The software system in each player is distributed among 

the various computational units (Fig. 2). High-level 

functions run on the computer, a laptop PC running Linux 

operating system. Low-level functions run partly on 

dedicated microcontrollers. A cooperative sensing 

approach based on a Real-Time Database (RTDB) [1] has 

been adopted. The RTDB is a data structure where players 

share their world models. It is updated and replicated in all 

players in real-time. 
 

Fig. 3 shows the class diagram of the CAMBADA 

WorldState class. This class supports the information 

storage of ball and players positions, roles, behaviors, etc.. 

A module called Integrator is used to update the world 

state information. This is done by filtering the raw 

information coming from sensors (i.e. vision, odometry, 

etc.) and determining the best estimate of the position and 

velocity of each object. The World State class includes 

several methods that test conditions on the current situation 

(ex: if the robot is facing the opposite goal). 
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Fig. 2. Layered software architecture of CAMBADA players, from [3]  

 

A recent, and very important, development as been the 

integration into the sensor fusion module of a self-

localization lines based engine, based on the one described 

in [12], that allows a high level of confidence in the robots 

estimated self position. 

The high-level processing loop starts by integrating 

perception information gathered locally by the player. This 

includes information coming from the vision processes, 

which is stored in a Local Area of the RTDB, and 

odometry information coming from the holonomic base via 

FTT-CAN. After integration, part of the world state is 

written in the shared area of the RTDB to make it available 

to teammates. The next step is to integrate local 

information with information shared by teammates. 

 

 
 

Fig. 3. WorldState class diagram 

 

The software of the CAMBADA agent is composed of 

several different processes that have responsibility for 

different tasks: image acquisition, image analysis, 

integration/decision and communication with the low-level 
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modules. The order and schedule of activation of these 

processes is performed by a processor manager library 

called Pman [16]. Pman stores in a database the 

characteristics of each process to activate and allows the 

activation of recurrent tasks, settling phase control 

(through the definition of temporal offsets), precedence 

restrictions, priorities, etc. The pman services allow 

changes in the temporal characteristics of the process 

schedule during run-time. 

It is very important that all robots share the same play 

mode obtained by processing the referee orders given 

through the referee box. In CAMBADA, an application 

inside the team’s base station checks the messages 

received from the “referee box”, and converts the event 

triggered protocol of communication “referee box” - “base 

station” to a state oriented playmode information that is 

broadcasted to robots using the RTDB. This ensures that 

the delay between the reception of a referee event from the 

“referee box” and its awareness by all robots is minimized, 

enabling a synchronized collective behavior. 

 

C. Roles and Behaviors 

The CAMBADA agent decision module is based on the 

concepts of role and behavior. Behaviors are the basic 

sensorimotor skills of the robot, like moving to a specific 

position or kicking the ball, while roles select the active 

behavior at each time step. 

All roles within a CAMBADA agent are derived from 

the Role abstract class (Fig. 4), whose most important 

element is the determineNextState() method. This method 

is responsible for the selection of the active behavior. To 

develop a new role, a Role derived class is created and the 

determineNextState() method is implemented. The run() 

method is implemented only in the base class and is 

responsible for the selection of the active behavior, using 

determineNextState(), and for its execution. 

To change the active behavior, the method 

changeBehaviour(Behaviour*), implemented in the Role 

base class, is used. 

During play-on mode, the CAMBADA agents use only 

three roles: RoleStriker, RoleMidfielder and RoleGoalie. 

The RoleGoalie is activated for the goalkeeper.  

RoleStriker is an “active player” role. It tries to catch the 

ball and score goals according to the finite-state machine 

shown in Fig. 5. The striker activates several behaviors 

that try to engage the ball (MoveToBall, 

MoveOutsideBall), get into the opponent’s 

side avoiding obstacles (Dribble) and shoot 

to the goal (Kick). The Kick behavior can 

perform 180º turns while keeping possession 

of the ball. The MoveOutsideBall is used in 

situations where a direct catch would lead to 

the ball getting out of the field. In these 

situations the robot approaches the ball from 

the exterior side of the field thus pushing it 

inside. 

RoleMidfielder is a “passive” player. It 

moves according to its determined strategic 

positioning [18]. The strategic position is 

determined for each positioning using a home position and 

then adjusting it using attractions to the ball current 

position. Using different home positions and attractions 

according to the positioning allows a simple definition of 

defensive, wing, midfielders and attack strategic movement 

models. 
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Fig. 5. Finite-state machine for decision-making in RoleStriker 

 

Three more roles are used in set-pieces like kick-off, 

throw-in, goal-kick, corner-kick, free-kick and penalty. 

RoleToucher and RoleReplacer are used to overcome the 

indirect rule in the case of indirect set pieces. The purpose 

of RoleToucher is to touch the ball and leave it to the 

RoleReplacer player. The replacer handles the ball only 

after it has been touched by the toucher. This scheme 

allows the replacer to score a direct goal if the opportunity 

appears. RoleBarrier is used during the set-pieces against 

CAMBADA to protect the goal from a direct shoot. 

RolePenalty is used in penalty shootouts. It randomly 

chooses the goal side to which to kick and kicks the ball so 

that it enters the goal at 0.75m height. 

The class diagram of behaviors is shown in Fig. 6. The 

abstract class Behavior is the base of all behaviors. It has 

three important methods. The first one is calculate(), an 

abstract method, whose implementation in derived classes 

determines which are the parameters of the command that 

this behavior intends to execute (velX, velY, velA, 

grabberInfo and kickerInfo) but does not execute them. 

The second is execute(), which sends previously computed 

linear, angular velocities and the kicking parameters to the 

low level computation modules. The separation of 

 

 
 
Fig. 4. Role class diagram 
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calculation and execution enables the agent to reason on 

the expected result of the commands while deciding which 

one to execute. Finally, grabberControll() controls the 

grabber mechanism automatically, without concerns for the 

behaviors developments. 

The set of behaviors that are implemented in the 

CAMBADA agent are adapted to its catadioptric 

omnidirectional vision and holonomic driving systems. 

The combination of these technologies enhances the set of 

possible behaviors when compared to a differential drive 

robot or to an holonomic drive robot with a limited field of 

view. 

The behavior Move uses two symbolic parameters: the 

target position where to move; and the position which the 

CAMBADA player should be facing in its path to the 

target. The symbols used are OBall, TheirGoal and 

OurGoal. The other moving behavior MoveToAbs allows 

the movement of the player to an absolute position in the 

game field. Those moving behaviors may activate the 

functions of avoiding obstacles and avoiding the ball (used 

during the game repositions to avoid collisions with the 

ball). The Dribble behavior is used to dribble the ball to a 

given relative player direction. GoalieDefend is the main 

behavior of the goalie. The Kick behavior is used to kick 

the ball accurately to one 3D position in opponent goal. 

III. INFORMATION SHARING AND INTEGRATION 

Sharing perceptional information in a team can improve 

the accuracy of world models. Sharing internal state can 

improve the team coordination. Therefore, information 

sharing and integration is one of the key aspects in multi-

robot teams. 

In CAMBADA, each robot uses some of the perceptions 

of the other robots, obtained through the RTDB, to 

improve its knowledge about the current positions and 

velocities of the others robots and of the ball. It is very 

important for our coordination model to keep an accurate 

estimation of the absolute position of the ball by each 

robot. The role assignment algorithm is based on the 

absolute positions of the robot and its teammates.  The 

teammates’ positions are not obtained through the vision 

system and rely completely on the communicated 

estimated self positions of others. 

Each agent communicates its own absolute position and 

velocity to all teammates as well as its ball information 

(position, velocity, visibility and engagement in robot), 

current role and current behavior is also shared.  

The sharing of own absolute position and velocity 

is needed first of all because the vision system of the 

agents currently cannot detect the localization of the 

teammates. The vision system only detects obstacles 

but it doesn’t try to detect individual robots within 

the detected obstacles nor does it try to determine if 

they are teammates or opponents. The absolute 

position of teammates is necessary to the strategy of 

our team, as the information is used to define our 

formation/strategy. So each robot trusts the 

estimated self position of teammates that is 

communicated through the RTDB. 

Multi-robot ball position integration has been used in 

the middle-size league by several teams [21][6]. In 

CAMBADA, multi-robot ball position integration is used 

to maintain an updated estimate of the ball position, when 

the vision subsystem cannot detect the ball, and to validate 

robot's own ball position estimate, when the vision 

subsystem detects a ball. 

 

       
(a)                                                         (b) 

 

Fig. 7. Multi-robot ball position integration 

 

Currently, a simple integration algorithm is used. When 

the agent doesn’t see the ball, it analyzes the ball 

information of playing teammates. The analysis consists in 

the calculation of the mean and standard deviation of the 

ball positions, then discarding the values considered as 

outliers of ball position, and finally using the ball 

information of the teammate that has a shorter distance to 

ball. To determine if the agent sees a fake ball, i.e., to 

validate the robot's own perception, we use a similar 

algorithm. 

Communication is also used to convey the coordination 

status of each robot allowing robots to detect 

uncoordinated behavior, for example, several robots with 

the same exclusive role, and to correct this situation 

reinforcing the reliability of coordination algorithms. 

The communication between the base station and the 

robots informs the robots of the active playmode (decided 

by the referee). In some of the used setups, a coach agent, 

also possibly running in the base station, decides robot's 

roles and communicates its decisions to the robots using 

the RTDB. During development the base station can be 

used to control several robotic agent characteristics like 

fixed roles, fixed behaviors, manually activated self-

 
 

Fig. 6. Behavior class diagram 
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positioning, etc, all managed through the RTDB. 

IV. TEAM COORDINATION 

Our coordination model is based on the definition of a 

strategy for a game, where each strategy may be composed 

of several tactics and each tactic defines a formation to be 

used at each situation in a similar way as SBSP strategies 

previously developed for the RoboCup Simulation League 

[18]. However several changes had to be introduced in 

order to adapt the coordination model to the specificities of 

the Middle-Size League. This model is merged with role 

based coordination and different priorities are assigned to 

the different roles and positionings. In specific situations, 

like kick ins, or corners, specific set-plays are activated 

where a coordinated and synchronized set of basic 

behaviors is performed by all robots in the team. 

A. Strategy of Role based strategic positioning 

Each tactic is a complete specification of the team 

coordinated behavior for all situations. A formation 

defines the movement model of the set of all robots which 

assigns to each positioning a home position and 

corresponding attractions to the ball. All these items are 

maintained in a strategy configuration file, to enable 

flexible alterations to the current strategy. To maintain a 

correct formation all robots should have estimations of the 

ball absolute position that are close to each other. Fig. 8 

shows the formation of the team used in Robótica 2007 

Tournament [8] for several ball positions. 

The Striker is helped by other teammates as they 

maintain their strategic positioning and accompany the 

striker, without interfering with him, as it plays along the 

field. In case the ball is captured by the opponent the other 

mates are in good positions to become the new strikers. 

 

 
 

Fig. 8. Strategic positions for several different ball position 

 

B. Role/Positioning assignment algorithm 

So far, several different roles have been described but 

coordination must ensure a proper and safe role 

assignment algorithm. This algorithm should be able to 

function with a varying number of active players in the 

team, either because of hardware or software 

malfunctioning or because of referee orders. These are 

very common situations in the MSL. 

The playon decision that assigns the Striker role and the 

positionings of the other robots in the formation is 

performed using an algorithm similar to DPRE [17], but 

with the innovation of considering different priorities for 

the different roles and positionings, so that the most 

important ones are always covered as the number of active 

players varies.  

The algorithm is presented in Fig. 9. Considering a team 

of R field players (not counting the goal-keeper which has 

a different mechanical configuration and therefore a fixed 

role), to assign the role and positioning to each robot, the 

distances of all robots to all strategic positions are 

calculated. Then the Striker role is assigned to the robot 

that is closest to the highest priority strategic position, 

which is in turn the closest to the ball. From the remaining 

R-1 robots the closest to the defensive positioning (second 

highest priority) is assigned to this positioning, then the 

closest to the third level priority positioning is assigned 

next and the algorithm continues until all active robots 

have positionings and roles assigned. This algorithm 

results in the Striker role having top priority, followed by 

the defensive positioning, followed by the other supporter 

positionings. The assignment algorithm may be performed 

by the coach agent in the base station, assuring a 

coordinated assignment result, or locally by each robot, in 

which case the inconsistencies of world models may lead 

to unsynchronized assignments. 

 
 

MSL_DPRE(robotPositions, ballPosition, 

         formation) 

 

clear assignments 

determine strategicPositions[N_POSITIONS] 

determine distSP[N_POSITIONS][N_ROBOTS] 

for each SPos sorted by priority 

   determine closest free Agent to SPos 

   assign SPos to Agent 

 

Return assignments 

 

 

Fig. 9. CAMBADA Positioning/Role assignment algorithm 

 

C. Set plays 

One other coordination methodology that is being used 

in CAMBADA is the use of predefined set plays. Currently 

set plays are only initiated when re-entering the play-on 

mode. Set plays define a sequence of behaviors for several 

robots in a coordinated way. Each of the tasks that 

compose a set play are implemented using a special role. 

These roles are activated at the specific situation: kick-off, 

kick in, corners, free kicks and goal kicks. 

The assignment of the Barrier, Replacer and Toucher 

roles is executed by sorting the agents according to their 

perceived distances to the ball and selecting the closest 

ones, up to the maximum number of agents in each role. 

When selecting a role like the Replacer, which is 

exclusive, the agent looks at the other teammates role 

decisions and if it finds a Replacer with a lower uniform 

number it will never select the Replacer role. A similar 

approach is performed for the other roles. This assignment 

is always performed locally by each robot. 
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V. CONCLUSION 

The data structures used for world state representation 

clearly separate the raw sensor information from the world 

model that results of integrating local and shared 

information. This architecture is easily adaptable to the 

addition of new sensors. Access to the world model is 

performed by using specific queries. 

The adaptation of SBSP and DPRE [17][18] to the 

Middle-Size League environment resulted in a coordinated 

behavior of the team that contributed to its recent 

successes. The formation flexibility and adaptability was 

one of the components presented by CAMBADA in the 2
nd

 

Technical Challenge of RoboCup 2007 (based on 

Challenge 6 of [13]), Atlanta, where the team ranked in the 

4
th

 place. The robot malfunctions decrease the number of 

field players, but the positioning/role assignment algorithm 

maintains a competitive formation with fewer players in 

the field. Set plays were very efficient as several of the 

CAMBADA goals were the direct result of their activation. 

The work described in this paper was used in two 

RoboCup competitions: 

a. Portuguese Robotics Open 2007 (Portugal): 1st place, 

6 wins, 0 draws, 0 looses, 16 goals scored and 3 goals 

suffered; 

b. RoboCup2007 (USA): 5th place, 7 wins, 1 draws, 1 

looses, 24 goals scored and 7 goals suffered. 
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J. L. Azevedo, N. Lau, G. Corrente, A. Neves, M. B. Cunha, F. Santos, 
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D. Martins, N. Figueiredo, J. Silva, N. Filipe, I. Pinheiro 

Transverse Activity on Intelligent Robotics 
IEETA/DETI – Universidade de Aveiro 

3810-193 Aveiro, Portugal 

Abstract. This paper describes the CAMBADA middle-size robotic soccer 
team for the purpose of qualification to RoboCup’2008. Last year 
improvements have been made mostly in the vision system, in the high-level 
coordination and control and in the information integration and localization. 
Previous experience of some elements of the team in the RoboCup Simulation 
League has been highly relevant particularly in the design of the high-level 
coordination and control framework. 

1 Introduction 

CAMBADA 1 is the RoboCup middle-size league soccer team of the University of 
Aveiro, Portugal. This project started officially in October 2003 and, since then, the 
team has participated in four RoboCup competitions, namely, RoboCup’2004, 
RoboCup’2006, DutchOpen’ 2006 and RoboCup’2007, and in the last four editions of 
the Portuguese Robotics Festival: Robotica2004, Robotica2005, Robotica2006 and 
Robotica2007. CAMBADA middle-size robotic soccer team won the 1st place in the 
Portuguese Robotics Festival’2007 and ranked 5th in the RoboCup World 
Championship’2007. 

This paper describes the current development stage of the team and is organized as 
follows: Section 2 describes the general architecture of the robots focusing both on 
low-level control hardware aspects and on the general software architecture. Section 3 
presents the current version of the vision system. Section 4 describes the high-level 
coordination and control framework and, finally, section 5 concludes the paper. 

2 General Architecture of the Robots 

The general architecture of the CAMBADA robots has been described in [1], [2], 
[11]. Basically, the robots architecture is centered on a main processing unit that is 
responsible for the higher-level behavior coordination, i.e. the coordination layer. 
This main processing unit (a PC) processes visual information gathered from the 

                                                           
1 CAMBADA is an acronym of Cooperative Autonomous Mobile roBots with Advanced 

Distributed Architecture. 



vision system, executes high-level control functions and handles the external 
communication with the other robots. This unit also receives sensing information and 
sends actuating commands to control the robot attitude by means of a distributed low-
level sensing/actuating system. The PC runs the Linux operating system. The 
communication among team robots uses an adaptive TDMA transmission control 
protocol [3],[15] on top of IEEE 802.11b, that reduces the probability of transmission 
collisions between team mates thus reducing the communication latency. This 
transmission protocol is used to support a Shared Real Time Database (RTDB), which 
permits sharing selected state variables between the team mates. 

The low-level sensing/actuation system (Fig. 1) is implemented through a set of 
microcontrollers interconnected by means of a network. For this purpose, Controller 
Area Network (CAN) [5], a real-time fieldbus typical in distributed embedded 
systems, has been chosen. This network is complemented with the FTT-CAN 
(Flexible Time-Triggered communication over CAN) [4],[6] higher-level 
transmission control protocol to enhance its real-time performance, composability and 
fault-tolerance. The low-level sensing/actuation system executes four main functions, 
namely, Motion control, Odometry, Kicking and System monitoring. The Motion 
control function provides holonomic motion using 3 DC motors. The Odometry 
function combines the encoder readings from the 3 motors and provides coherent 
robot displacement information that is then sent to the coordination layer. The Kick 
function includes the control of an electromagnetic kicker and of a ball handler to 
dribble the ball. Finally, the System monitor function monitors the robot batteries as 
well as the state of all nodes in the low-level layer. 

 

 

Fig. 1. The CAMBADA hardware architecture. 

The low-level control layer connects to the coordination layer through a gateway, 
which filters interactions within both layers, passing through the information that is 
relevant across the layers, only. 

 
The software system in each robot is distributed among the various computational 

units. High level functions are executed on the PC, while low level functions are 
executed on the microcontrollers. A cooperative sensing approach based on a Real-
Time Database (RTDB) [1], [3], [7] has been adopted. The RTDB is a data structure 
where the robots share their world models. It is updated and replicated in all players 
in real-time.  



The high-level processing loop starts by integrating perception information 
gathered locally by the robot, namely, information coming from the vision system and 
odometry information coming from the low-level layer. This information is 
afterwards stored in the local area of the RTDB. The next step is to integrate the robot 
local information with the information shared by team-mates, disseminated through 
the RTDB. The RTDB is then used by another set of processes that define the specific 
robot behavior for each instant, generating commands that are sent down to the low-
level control layer. 

3 Vision System 

Some improvements have been made in the vision system, in particular the 
development of auto-calibration algorithms and the use of a hybrid vision system 
integrating an omni-directional and a perspective camera. 

The omni-directional part of the vision system [13] is based on a catadioptric 
configuration implemented with a firewire camera and a hyperbolic mirror. We are 
using the camera in 640x480 RGB mode at 30 frames per second. 

The perspective camera uses a low cost firewire web-camera (BCL 1.2 Unibrain 
camera with a ¼” CCD sensor and a 3.6mm focal distance lens) configured to deliver 
640x480 YUV images at a rate of 30 frames per second.  

The omnidirectional vision system is used to find the ball, the goals, detect the 
presence of obstacles and the white lines (used by the localization algorithm). The 
perspective vision is used to find the ball and obstacles in front of the robot at higher 
distances, which are difficult to detect using the omnidirectional vision system. 

A set of algorithms have been developed to extract the color information of the 
acquired images and, in a second phase, extract the information of all objects of 
interest. To take advantage of the parallel processing capabilities of the hardware, the 
vision system main tasks, namely, image acquisition, color extraction, object 
detection and image visualization, are organized in separate processes which, when 
possible, are executed in parallel (Fig. 2). The implemented color extraction algorithm 
is based on lookup tables and the object detection in a radial model. The vision 
system is fast and accurate, having a processing time roughly independent of the 
environment around the robot. 

 

 
 

Fig. 2. Architecture of the vision system, applied both to the omnidirectional and perspective 
subsystem. 



Image analysis in the RoboCup domain is simplified, since objects are color coded. 
This fact is exploited by defining color classes, using a look-up-table (LUT) for fast 
color classification. The table consists of 16777216 entries (24 bits: 8 bits for red, 8 
bits for green and 8 bits for blue), each 8 bits wide, occupying 16 MB in total. The 
pixel classification is carried out using its color as an index into the table. The color 
calibration is done in HSV (Hue, Saturation and Value) color space. In the current 
setup the image is acquired in RGB or YUV format and is then converted to an image 
of labels using the appropriate LUT.  

The image processing software uses radial search lines to analyze the color 
information. A radial search line is a line that starts in the center of the robot with 
some angle and ends in the limit of the image. The center of the robot in the 
omnidirectional subsystem is approximately in the center of the image. However, the 
center of the robot in the perspective subsystem is in the bottom of the image. 

The regions of the image that have to be excluded from analysis (such as the robot 
itself, the sticks that hold the mirror and the areas outside the mirror) are ignored 
through the use of a previously generated image mask.  

The objects of interest (a ball, obstacles and the white lines) are detected through 
algorithms that, using the color information collected by the radial search lines, 
calculate the object position and/or their limits in an angular representation (distance 
and angle). The position of the ball and the obstacle are stored in the RTDB. 

The white lines are detected using an algorithm that, for each search line, finds the 
transition between green and white pixels. These detected white points are stored in 
the RTDB for later use by the robot self-localization process. 

A set of algorithms have been also developed to perform the auto-calibration of the 
cameras. These algorithms use a white and a black area to calibrate the values of the 
white-balance, gain, exposure and brightness. Detailed information about these 
algorithms will be published soon. The experimental results obtained show the 
effectiveness of the algorithms, in particular its convergence independently of the 
original configuration of the cameras and the type of the environment light. 

 

  
Fig. 3. An example of the blobs found in an acquired image. On the left, it is presented the 
original image. On the right, is it shown the color blobs found for that image. For each blob, we 
calculate useful information that is used later to calculate the position of each object. 



3.1 Inverse Distance Map 

The use of a catadioptric omni-directional vision system based on a regular video 
camera pointed at a hyperbolic mirror is a common solution for the main sensorial 
element found in a significant number of autonomous mobile robot applications. For 
most practical applications, this setup requires the translation of the planar field of 
view, at the camera sensor plane, into real world coordinates at the ground plane, 
using the robot as the center of this system. In order to simplify this non-linear 
transformation, most practical solutions adopted in real robots choose to create a 
mechanical geometric setup that ensures a symmetrical solution for the problem by 
means of single viewpoint (SVP) approach. This, on the other hand, calls for a precise 
alignment of the four major points comprising the vision setup: the mirror focus, the 
mirror apex, the lens focus and the center of the image sensor. Furthermore, it also 
demands the sensor plane to be both parallel to the ground field and normal to the 
mirror axis of revolution, and the mirror foci to be coincident with the effective 
viewpoint and the camera pinhole respectively. Although tempting, this approach 
requires a precision mechanical setup. 

We developed a general solution to calculate the robot centered distances map on 
non-SVP catadioptric setups, exploring a back-propagation ray-tracing approach and 
the mathematical properties of the mirror surface [12]. This solution effectively 
compensates for the misalignments that may result either from a simple mechanical 
setup or from the use of low cost video cameras. Therefore, precise mechanical 
alignment and high quality cameras are no longer pre-requisites to obtain useful 
distance maps. The method can also extract most of the required parameters from the 
acquired image itself, allowing it to be used for self-calibration purposes. 
In order to allow further trimming of these parameters, two simple image feedback 
tools have been developed. 

 

 
Fig. 4. Acquired image after reverse-mapping into the distance map. On the left, the map was 
obtained with all misalignment parameters set to zero. On the right, after automatic correction. 

The first one creates a reverse mapping of the acquired image into the real world 
distance map. A fill-in algorithm is used to integrate image data in areas outside pixel 



mapping on the ground plane. This produces a plane vision from above, allowing 
visual check of line parallelism and circular asymmetries (Fig. 4). 
The second generates a visual grid with 0.5m distances between both lines and 
columns, which is superimposed on the original image. This provides an immediate 
visual clue for the need of possible further distance correction (Fig. 5). Since the mid-
field circle used in this setup has exactly an outer diameter of 1m, incorrect distance 
map generation will be emphasized by grid and circle misalignment. 

 
Fig. 5. A 0.5m grid, superimposed on the original image. On the left, with all correction 
parameters set to zero. On the right, the same grid after geometrical parameter extraction. 

4 High-level coordination and control 

The high-level decision is built around three main modules: sensor fusion, basic 
behaviors and high-level decision and cooperation. Monitoring of the whole team of 
robots is also one of the pursued lines of research [14]. The objective of the sensor 
fusion module is to gather the noisy information from the sensors and from other 
robots and update the RTDB database that will be used by the high-level decision and 
coordination modules. The basic behaviors module provides the set of primitives that 
the higher-level decision modules use to control the robot. It is essential to provide 
those modules with a good set of alternatives, each of which should be as efficient as 
possible. The high-level decision module is responsible for the analysis of the current 
situation and for the performing of decision-making processes carried out by each 
player in order to maximize, not only the performance of its actions, but also the 
global success of the team.  

The sensor fusion module has recently been redesigned, in what concerns its 
interface with the other modules, in order to get a common view over all the sensor 
measures. Now all sensors write into adequate structures, but only the sensor fusion 
module is allowed to update the RTDB. A very important development has been the 
integration into the sensor fusion module of a self-localization lines-based engine, 
based-on the one described in [10], that allows a high level of confidence in the robots 
estimated self-position. In order to face the removal of the goal colors, which turned 



the field into a symmetric environment, an electronic compass has been included to 
setup the initial orientation of the robots. 

 
The high-level decision module currently uses state-machine based modeled roles 

that switch the basic behavior of the robot in accordance with the current situation and 
the previous state. Coordination is achieved by the definition of formations of 
different roles [9] and by a higher-level module where role switching is performed. 
The concepts of roles, formations and set-plays have previously been used in the 
RoboCup by some Simulation and Middle-Size teams. The coordination is in the 
process of integrating the information coming from the new self-localization engine, 
which allows the use of coordination techniques like SBSP [8]. In some cases, such as 
kick-ins or corners, specific set-plays are activated where a coordinated and 
synchronized set of basic behaviors is performed by all team robots. 

4.1 Communication-based Team Coordination  

In this environment inter-robot communication and communication between base 
station and robots is a key issue, so that the team can maintain a coordinated behavior. 
Each robot uses part of the perception of the other robots, obtained through the 
RTDB, to improve its knowledge about the current positions and velocities of the 
other robots and of the ball. It is very important for our coordination model that each 
robot keeps an accurate estimation of the absolute position of the ball. The role 
assignment algorithm is based on the absolute position of both the robot and its 
teammates. The teammates' positions are not obtained through the vision system and 
rely completely on the communicated estimated self positions of others. 

4.2 Multi Robot Ball Position Integration 

The CAMBADA team is currently using a simple algorithm for Multi Robot Ball 
Position Integration. This is used to maintain an updated estimation of the ball 
position, whenever the vision subsystem is unable to detect the ball, and to validate 
robot's own ball perception when the vision subsystem detects a ball. When the agent 
doesn’t see the ball, it analyzes the ball information of playing teammates. The 
analysis consists in the calculation of the mean and standard deviation of all target 
ball positions, then discarding the values considered as outliers, and finally using the 
ball information of the teammate that has a shorter distance to ball. 

4.3 Coordination Methodologies 

Our coordination model is based on the definition of a strategy for a game, where 
each strategy may be composed of several tactics and each tactic defines a formation 
to be used at each situation. This model is merged with a role based coordination 
where different priorities are assigned to the different roles and positioning. All these 
items are maintained in a strategy configuration file to enable flexible changes to the 
current strategy. To maintain a correct formation all robots should have estimations of 



the ball absolute position obtained through the ball position integration method 
referred above. 
 

 
 

Fig. 6. Strategic positions for several different ball positions. 

The role assignment algorithm is designed to support a varying number of active 
players in the team, resulting either from hardware or software malfunctioning or 
from referee orders. These are very common situations in the MSL. 

5 Conclusion 

This paper described the current development stage of the CAMBADA robots. Since 
the last submission of qualification material (in January/2007) several major 
improvements have been carried out, namely: the development of auto-calibration 
algorithms and the use of a hybrid vision system integrating an omni-directional and a 
perspective camera; the development of an analytical method to get the relationship 
between image pixels and real world distances and the re-design of the higher-level 
coordination and control software. These team improvements led to good results both 
in the Portuguese Robotics Open (1st place) and at RoboCup'2007 Atlanta (5th place). 
After RopoCup'2007 the development has been focused on perfecting the vision 
system and the high-level decision algorithms. CAMBADA development team 
currently includes 5 Msc. students. 
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The Base Station Application of the CAMBADA
Robotic Soccer Team

Nuno Figueiredo, António Neves, Nuno Lau, José Azevedo, Artur Pereira and Gustavo Corrente

Abstract – The base station is the software appli-

cation responsible to provide automatic processing

of soccer game refereeing events and to allow high

level monitoring and control of the robots internal

states. This paper presents the base station devel-

oped for CAMBADA, the robotic soccer team of

the University of Aveiro. It describes the main re-

quirements and specifications of the base station

and presents the architecture of the application,

giving special attention to the description of the

main modules and to the connection between them.

It also describes the multi-window system, among

other issues, namely the classes implemented and

the mechanism of passing information among the

several modules.

Resumo – A estação base é a aplicação de software

responsável pelo processamento automático dos

eventos que ocorrem num jogo de futebol robótico e

pela monitorização e controlo do estado interno dos

robôs. O presente artigo descreve a estação base de-

senvolvida para a equipa CAMBADA, o projecto de

futebol robótico da Universidade de Aveiro. Neste

artigo são descritos os principais requisitos e especi-

ficações da aplicação, bem como a sua arquitectura,

dando especial atenção aos principais módulos e à

forma como eles se interligam e comunicam entre

si. O artigo descreve também o sistema de jane-

las múltiplas bem como algumas outras questões,

nomeadamente, as classes implementadas e o me-

canismo de passagem de informação para diversos

módulos do sistema.

I. Introduction

Robotic soccer is nowadays a popular research domain
in the area of multi-robot systems. RoboCup1 is an in-
ternational joint project to promote research in artifi-
cial intelligence, robotics and related fields. RoboCup
chose soccer as the main problem aiming at innova-
tions to be applied for socially relevant problems. It
includes several competition leagues, each one with a
specific emphasis, some only at software level, others
at both hardware and software, with single or multiple
agents, cooperative and competitive.
In the context of RoboCup, the Middle Size League

(MSL) is one of the most challenging. In this league,
each team is composed of up to 6 robots with a max-
imum size of 50cm × 50cm width, 80cm height and

1http://www.robocup.org/

a maximum weight of 40Kg, playing in a field of
18m×12m. The rules of the game are similar to the of-
ficial FIFA rules, with minor changes required to adapt
them for the playing robots [1].
The rules of this league establish several constraints

to simplify perception and world modeling. In partic-
ular, the ball is orange, the field is green, the field lines
are white and the players are black. The duration of a
game is 30 minutes, not including a half-time interval
of 5 minutes. The game is refereed by a human and
his orders are communicated to the teams using an ap-
plication called “referee box” operated by an assistant
referee. The referee box sends the referee orders to
the team through a wired LAN TCP link connected to
the external computer of each team. It is the team re-
sponsibility to communicate these orders to the robots
through the field wireless network.
No human interference is allowed during the games

except for removing malfunctioning robots and re-
entering robots in the game. Each robot is autonomous
and has its own sensorial means. They can communi-
cate among each other and with an external computer
through a wireless network. This external computer,
that has no sensor of any kind, runs the base station
application. The base station only “knows” what is
reported by the playing robots and the orders received
from the referee box. The agents should be able to
evaluate the state of the world and take decisions suit-
able to fulfill the cooperative team objective.
CAMBADA2, Cooperative Autonomous Mobile roBots
with Advanced Distributed Architecture, is the Middle
Size League Robotic Soccer team from the University
of Aveiro. The CAMBADA research project started in
2003, coordinated by the Transverse Activity on Intel-
ligent Robotics (ATRI)3 group of the Institute of Elec-
tronic and Telematic Engineering of Aveiro (IEETA)4.
Since then, it has involved people working on sev-
eral areas for building the mechanical structure of the
robot, its hardware architecture and controllers [2] and
the software development in areas such as image anal-
ysis and processing [3]-[7], sensor and information fu-
sion [8], reasoning and control [9].
Since its creation, the team has participated in several

competitions, both national and international. Each
year, new challenges are presented, and new objectives
are defined, always with a better team performance

2http://www.ieeta.pt/atri/cambada
3http://www.ieeta.pt/atri
4http://www.ieeta.pt
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in sight. After achieving the first place in the national
competition Robótica 2007 and Robótica 2008, the 5th
place in the world championship RoboCup 2007, this
year the team achieved the first place in the world
championship RoboCup 2008.
This paper presents the base station developed for

the robotic soccer team CAMBADA. Being this ap-
plication of extreme importance for the team, the re-
quirements and specifications of the project had to be
carefully analyzed. These issues are presented in Sec-
tion II. Section III presents the software architecture
of the base station. Section IV describes the implemen-
tation details, in particular the classes developed and
the information update mechanism. Finally, Section V
draws some conclusions.

II. Requirements and Specifications

The base station is the software application respon-
sible to provide automatic processing of soccer game
refereeing events (coming from the referee box) and to
allow high level monitoring and control of the robots
internal states. This application must be able to show
all relevant information of the robots, namely position
in the field, velocity, battery charge, among other in-
formation, and send basic commands/information to
the robots, in particular the run and stop commands,
play mode, etc. Besides that, the base station has a
fundamental role in a game, while receiving the com-
mands from the referee box, translating them to in-
ternal game states and broadcasting the results to the
robots. During a game, no human interference is al-
lowed except for removing malfunctioning robots and
re-entering robots in the game.
The role of the base station during the game led to

the fulfillment of some requirements, being the most
important the following:

Reliability / Stability: during the game, the base sta-
tion is not accessible for human interaction of any
kind and thus, it has to be a very robust applica-
tion.

Usability: the information displayed in the base sta-
tion should be easy to interpret, allowing, for in-
stance, for a fast detection of a problem in a robot.
Moreover, it should be possible to choose different
levels of details in the displayed information.

Usability in the team development stage: the base
station has to be easy to use, allowing an intuitive
management of the robots.

Adaptability: a robotic soccer team is in a permanent
development stage, which may lead to significant
changes within a short period of time.

These requirements led to the following specifications:

Modular construction: a robot, for instance, should
be an instantiable entity in the application in or-
der, for instance, to allow the inclusion of more
robots in the team. This modular construction
leads to a progressive development, allowing the
test of each module separately, thus increasing the

reliability and stability of the whole application.
Multi-windows solution: the application should be a

multi-window environment, allowing the user to
choose between different levels of information. At
least, three different levels of information should
be provided: a work level that presents the con-
trols of the robots and basic status information;
a visual level that presents visual information of
the position of the robots and, finally a detailed
level that shows all the information related to the
robots.

Robust communication skills: the correct operation
of the team during the game is fully dependent on
the communication between the robots, the base
station and the referee box. Hence, the base sta-
tion should provide a robust communication layer.

Automatic processing of the game states: the base
station should process the commands received
from the referee box allowing the robots to change
their internal game states accordingly. One spe-
cific action should be the changing of the field side
at half time.

Adaptable windows geometry: the multi-windows
system should adapt to monitors with different
resolutions. According to the new (upcoming)
MSL rules, the teams base stations must use an
external monitor provided by the organizing com-
mittee.

In order to use the base station during the team devel-
opment phase, the following specifications should also
be met:

Local referee box: the base station should provide an
interface widget to emulate a real referee box in
order to simulate events of a real game.

Manual positioning of the robots in the field: it should
be possible to move the robots, through a mouse
driven operation, to a specific position on the field.

Manual role assignment: acting as a cooperative
team, each robot has a specific role which is, dur-
ing a real game, dynamically assigned. In the de-
velopment phase, it should be possible to statically
assign a role to a specific robot.

III. System Architecture

The central software component in the architecture
of the CAMBADA robots is the Real-Time Database
(RTDB) [10]. The RTDB is a distributed data struc-
ture by means of which all the team agents share
their world models. It is updated and replicated in
all robots, base station and coach (the coach is a soft-
ware application, that running in the same computer
of the base station, that can, in some specific situa-
tions, assign the robots roles). The RTDB contains all
information related to the robots and game, namely
positions in the field, roles, behaviors, game sates, etc.
All the interaction between base station and the

CAMBADA robots is performed through the RTDB.
Due to this fact, one of the central modules in the



REVISTA DO DETIUA, VOL. 5, N◦ 1, NOVEMBRO 2008 3

Fig. 1 - All the commands and information exchanged between
all the team agents is accomplished through the RTDB.

base station architecture is the one responsible for
handling the communication with RTDB, named as
UpdateWidget (Fig. 6). It creates an abstraction layer
to the RTDB interaction mechanism.
Another module in the system is the RobotWidget

(Fig. 2). This module is responsible to send commands
to the robots and shows robots information, such as
position in the field, battery charge, etc.

Fig. 2 - The RobotWidget module showing the information and
the commands available for one robot.

The FieldWidget module is responsible to create a
visual interface to the user (Fig. 3). This module draws
the field and the robots and can provide a simple way
to control the position of the robots using a mouse
driven interaction.
The RobotInfoWidget module shows all the informa-

tion related to the robots stored in RTDB (Fig. 4).
Another important module in the base station system

is the RefBoxWidget. This module provides a local
referee box for test purposes and also manages the in-
formation received from a real referee box during a
game. It provides an easy interface to configure the
connection to the external referee box and allows the
temporary suspension of the handling of the referee
box messages maintaining the connection.
The base station implements a three windows based

solution, allowing the user to choose the better set
of information/actions that he wants to see/perform.

Fig. 3 - The FieldWidget showing the position of two robots and
the position of the ball as estimated by each of them.

Fig. 4 - The information of one robot in the base station informa-
tion window. This window shows the information of all robots
of the team.

Fig. 5 - The RefBoxWidget module providing a local referee box
for test purposes.

When the application starts, it shows one window,
the MainWindow (Fig. 7). The user can, at any time,
open the other windows: the FieldWindow (Fig. 8) and
the InfoWindow (Fig. 4). These two windows can be
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opened and closed independently. This solution allows
the user to have more than one screen with different
windows on each one. If the MainWindow is closed, all
the other windows will also be closed too.

Fig. 6 - The most important base station modules.

IV. Implementation

The base station project was developed in C++ in a
Linux environment using the Qt4 libraries [11]. The
Qt4 libraries were developed in C++ and provide
graphical and communication functions. This section
describes the most important classes developed for the
base station application and the most relevant issues
in the development process.

A. Base station Classes

In the base station project, the most important classes
that have been implemented are the following:

UpdateWidget: responsible for the connection be-
tween the base station and the RTDB. In this
class, it is declared a local image of the RTDB that
is passed, through a reference based mechanism,
to the other classes in the project. This class is
responsible for the connection to the RTDB and
for the update of the information present in the
local data structure.

FieldWidget: implemented using the integrated class
“GLWidget”, offered by the Qt4 library, that
merges the Qt4 communication mechanisms and
the graphical engine OpenGL. This class is respon-
sible for drawing the field and the robots. This
class implements a mechanism that allows the user
to select a robot and pass a new point in the field
to where the robot should move, using a mouse
based mechanism.

RobotWidget: this class implements all the visual el-
ements, like buttons, combo boxes, etc. related
to the robot information and control. It is also
responsible to process the information/commands
related to the robots. This class is instantiated as
many times as the total number of robots existing
in the team.

RobotInfoWidget: this class is responsible for the vi-
sual elements that show all the information stored
in the RTDB. Like RobotWidget, this class is in-

stantiated as many times as the total number of
robots existing in the team.

RefBoxWidget: this class is responsible for the cre-
ation, handling and destruction of the connection
between the base station and the external referee
box during a game. This class is also responsi-
ble for processing the game information and to
perform the change of the team side at half time.
This class also implements a local referee box.

MainWindowWidget: this is the application main
class. It constructs the other classes, handles
the mechanism of communication between Up-
dateWidget and the other classes and implements
all the visual elements concerning team commands
(coordinating all the robots at same time). This
class manages the other windows.

FieldWindowWidget: this class implements the visual
elements of the FieldWindow.

InfoWindowWidget: this class implements the visual
elements of the InfoWindow.

B. UpdateWidget Mechanism

This mechanism allows sharing the same memory
space with all modules in the application. It was imple-
mented using the concept of parent and child, where
a parent shares, with its children, the pointer to the
memory space.
The UpdateWidget includes the method
DB Robot Info *get info pointer(void) that
returns the pointer to the structure where a local
image of RTDB is stored. In all modules that interact
with this information, there is a method named void
get info pointer( DB Robot Info* ) which has to
be called to give access to the structure information.

Fig. 9 - The UpdateWidget references mechanism.

Figure 9 shows the process of passing the references
in all main widgets of the application.
The process begins in the MainWindow object. Af-

ter calling the constructor of the UpdateWidget,
the method get info pointer from UpdateWidget is
called. This function returns a pointer to the memory
space. After that, the MainWindow class passes this in-
formation to all its internal modules and other classes.
All the classes pass the pointer to their children.
The implementation of this mechanism rises two main

questions:
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Fig. 7 - The MainWindow of the base station application.

Fig. 8 - The FieldWindow of the base station application.
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Why is this mechanism not included in the construc-
tor of each class?
To include some classes in the design procedure it
is mandatory that they have default constructors
with predefined input parameters.

Why doesn’t this mechanism has problems of mutual
exclusion?
All interaction with the memory space is per-
formed inside slot methods (Qt4 mechanism that
responds to a specific signal) which guarantees the
mutual exclusion (thread-safe) [12].

C. RefBoxWidget incoming messages handling mech-
anism

One important issue in processing the messages com-
ing from the referee box is to guarantee the consistency
of the information in all robots. It is very important
that all robots share the same game states (play mode).
This is guaranteed by the broadcast mechanism of the
RTBD [13], [14].
The internal game states implemented in the CAM-

BADA are: Start, Stop, DropBall, OurKickOff,
TheirKickOff, OurPenalty, TheirPenalty,
OurFreeKick, TheirFreeKick, OurGoalKick,
TheirGoalKick, OurThrowIn, TheirThrowIn,
OurCornerKick and TheirCornerKick.
The base station has the notion of the team color and

compares all orders to decide which is the next internal
game state. An order like Magenta Free Kick could
be an OurFreeKick if the team has the Magenta color.
However, if the team color is cyan, the internal game
state will be TheirFreeKick.
The referee orders could be classified into two classes:
Game State orders and Game Status orders. The
Game State orders are concerned with the state of
the game. There are orders like Start, Stop,
MagentaGoalKick, etc. The Game State orders have
some special requirements to be processed. The or-
der of reception is important and, after each order, the
robots have to be informed of each game state. This
is more relevant in case of more than one command
is received in the same referee box message. However,
a status message doesn’t have these requirements. If
more than one command is sent in the same message,
the order of reception will be irrelevant. The algorithm
implemented in RefBoxWidget reflects that.

V. Conclusions

The application described in this paper was used in
the Portuguese Robotics Open “Robótica 2008” where
CAMBADA team was, for the second time, national
champion. Moreover, it was also used in world champi-
onship “RoboCup 2008” where CAMBADA team has
won, for the first time, the world champion title. Dur-
ing these events, the application showed a high level of
stability and reliability that was identified as a special
requirement in the beginning of this project. Besides
that, all other requirements were fulfilled, concluding
that the base station was an important agent in the

success of CAMBADA, contributing to the excellent
results obtained by the team in the last year.
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Abstract — This paper presents the architecture, 

information sharing and team coordination methodologies of 

the CAMBADA RoboCup middle-size league (MSL) team. 

The information sharing and integration strategy is designed 

to improve both the accuracy of world models and to support 

the team coordination. Part of the coordination model is 

based on previous work in the Soccer Simulation League, 

which has been adapted to the MSL environment. With the 

described design, CAMBADA reached the 1st place in the 

RoboCup 2008 world championship. Competition results and 

performance measures computed from logs and videos of 

competition games are presented and discussed. 

I. INTRODUCTION 

OBOTIC soccer is currently one of the most popular 

research domains in the area of multi-robot systems. 

The RoboCup rules and regulations for different robotic 

soccer modalities are widely accepted and followed. Many 

robotic soccer projects use RoboCup competitions for 

testing and validation of the adopted approaches. 

In the context of RoboCup, the so-called “middle-size 

league” (MSL) is one of the most challenging, since 

robotic players must be completely autonomous and must 

play in a field of 12 m × 18 m [16]. In this modality, teams 

are composed of at most six wheeled robots with a 

maximum height of 80 cm and a maximum weight of 40 

Kg. The rules of this modality establish several constraints 

to simplify perception and world modeling. In particular, 

the ball is orange, the field is green, the field lines are 

white, the players are black, etc. The duration of a game is 

30 minutes, not including a half-time interval of 5 minutes. 

The referee orders are communicated to the teams using an 

application called “referee box”. The referee box sends the 

referee orders to the team through a wired LAN TCP link 

connected to the base station of each team. It is the team's 

responsibility to communicate these orders to the robots 

inside the field via standard wireless LAN. No human 

interference is allowed during the games except for 

removing malfunctioning robots and re-entering robots in 

the game. 

Building a team for the MSL is a very challenging task, 

both at the hardware and software level. To be 

competitive, robots must be robust and fast and possess a 

comprehensive set of sensors. At the software level these 
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robots must have an efficient set of low-level behaviors 

and must coordinate themselves to operate as a team. 

Coordination in the MSL league is usually achieved 

through the assignment of different roles to the robots. 

Typically there is, at least, an attacker, a defender, a 

supporter and a goalie [27][2]. As the maximum number of 

robots in each team increases (it is currently 6) and the 

field becomes larger, more sophisticated coordination 

techniques must be developed. 

In the RoboCup Soccer Simulation League, teams have 

been using coordination schemes based on a coordination 

layer that includes strategy, tactics and formations 

[22][25], coordination graphs [11] and reinforcement 

learning [23]. 

CAMBADA is the RoboCup middle-size league soccer 

team of the University of Aveiro (Fig. 1). The project aims 

at fostering the Aveiro university research at several levels 

of the MSL challenge. Research conducted within this 

project has led to developments at the hardware level [3], 

infrastructure level [1][19][20], vision system [17][4], 

multi-agent monitoring [9] and high-level decision and 

coordination [13]. This paper is focused on the last of 

these components. 

The development of the team started in 2003 and a 

steady progress was observed since then. CAMBADA 

participated in several national and international 

competitions, including RoboCup world championships 

(5
th
 place in 2007, 1

st
 in 2008), the European 

"RoboLudens” and the annual Portuguese Open Robotics 

Festival (3
rd
 place in 2006, 1

st 
in 2007 and 2008). The 

good result obtained in RoboCup’2008 is largely due to 

the developed coordination methodologies, as the 

CAMBADA robots are among the slowest of the 

competition. 

This paper is organized as follows: Section II presents 

the hardware and software architectures of CAMBADA 

players and provides details on the main software 

components involved in individual decisions of the 

players. Section III describes how players share 

information with teammates and how they integrate shared 

information. Section IV describes the adopted coordination 

methodologies. Section V presents and discusses 

competition results and various performance measures. 

Section VI concludes the paper. 

II. PLAYER ARCHITECTURE 

A. Hardware Architecture 

The CAMBADA robots (Fig. 1) were designed and 

completely built in-house. The baseline for robot 

construction is a cylindrical envelope, with 485 mm in 

diameter. The mechanical structure of the players is 
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layered and modular. Each layer can easily be replaced by 

an equivalent one. The components in the lower layer, 

namely motors, wheels, batteries and an electromechanical 

kicker, are attached to an aluminum plate placed 8 cm 

above the floor. The second layer contains the control 

electronics. The third layer contains a laptop computer, at 

22.5 cm from the floor, an omni-directional vision system, 

a frontal camera and an electronic compass, all close to the 

maximum height of 80cm. 

The players are capable of holonomic motion, based on 

three omni-directional roller wheels. With the current 

motion system, the robots can move at a maximum speed 

of 2.0 m/s. As mentioned, this is less that many of the other 

MSL teams, which can currently move at speeds typically 

between 2.5 and 4.0 m/s (e.g. [18] [10] [24] [6]). 

The mentioned vision system allows detecting objects 

(ball, players, goals) and field lines on a radius of nearly 

5m around each player. The frontal camera allows to 

detect the ball further away. Besides vision, each player 

includes encoders, battery status sensors and, for detecting 

if the ball is kickable, an infra-red presence sensor. 

 

 
 

Fig. 1  CAMBADA robotic team 

 

The robots computing system architecture follows the 

fine-grained distributed model [12] where most of the 

elementary functions, e.g. closed loop control of complex 

actuators, are encapsulated in small microcontroller based 

nodes, connected through a network. A laptop node is used 

to execute higher-level control functions and to facilitate 

the interconnection of off-the-shelf devices, e.g. cameras, 

through standard interfaces, e.g. USB or Firewire (Fig. 2). 

For this purpose, Controller Area Network (CAN), a real-

time fieldbus typical in distributed embedded systems, has 

been chosen. This network is complemented with a higher-

level transmission control protocol to enhance its real-time 

performance, composability and fault-tolerance, namely 

the FTT-CAN protocol (Flexible Time-Triggered 

communication over CAN) [8]. 

In the middle-size league, inter-robot communication and 

communication between the team’s base station and the 

robots is extremely necessary for the team to maintain a 

coordinated behavior. The communication among robots 

and to the base station uses the standard wireless LAN 

protocol IEEE 802.11x profiting from large availability of 

complying equipment. The base station is connected to the 

referee box through a wired LAN TCP link. 

B. Software Architecture 

The software system in each player is distributed among 

the various computational units (Fig. 2). High-level 

functions run on the computer, a laptop PC running Linux 

operating system. Low-level functions run partly on 

dedicated microcontrollers. A cooperative sensing 

approach based on a Real-Time Database (RTDB) [1] has 

been adopted. The RTDB is a data structure where players 

share their world models. It is updated and replicated in all 

players in real-time. 

A software module called the Integrator is used to 

update the world state information. This is done by 

filtering the raw information coming from sensors (i.e. 

vision, odometry, etc.) and determining the best estimate 

of the position and velocity of each object. 

Self-localization uses a sensor fusion engine based on the 

publicly available engine described in [14]. By integrating 

information from field line detection, this engine produces 

self position estimates with a high level of confidence. 

Compass information is used to resolve ambiguities. 
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Fig. 2. Layered software architecture of CAMBADA players, from [3]  

 

The high-level processing loop starts by integrating 

perception information gathered locally by the player. This 

includes information coming from the vision processes, 

which is stored in a Local Area of the RTDB, and 

odometry information coming from the holonomic base via 

FTT-CAN. After integration, part of the world state is 

written in the shared area of the RTDB to make it available 

to teammates. The next step is to integrate local 

information with information shared by teammates. 

The software of CAMBADA players is composed of 

several different processes that have responsibility for 

different tasks: image acquisition, image analysis, 

integration/decision and communication with the low-level 

modules. The order and schedule of activation of these 

processes is performed by a process manager library called 

Pman [20]. Pman stores in a database the characteristics of 

each process to activate and allows the activation of 

recurrent tasks, settling phase control (through the 

definition of temporal offsets), precedence restrictions, 

priorities, etc. The Pman services allow changes in the 



  

temporal characteristics of the process schedule during 

run-time. 

It is very important that all robots share the same play 

mode obtained by processing the referee orders given 

through the referee box. In CAMBADA, an application 

inside the team’s base station checks the messages 

received from the “referee box”, and converts the event 

triggered protocol of communication “referee box” - “base 

station” to a state oriented playmode information that is 

broadcasted to robots using the RTDB. This ensures that 

the delay between the reception of a referee event from the 

“referee box” and its awareness by all robots is minimized, 

enabling a synchronized collective behavior. 

C. Roles and Behaviors 

The CAMBADA player decision module is based on the 

concepts of role and behavior. Behaviors are the basic 

sensorimotor skills of the robot, like moving to a specific 

position or kicking the ball, while roles select the active 

behavior at each time step. 

All roles are derived from a Role abstract class. Its 

determineNextState() method is responsible for the 

selection of the active behavior. To develop a new role, a 

Role derived class is created and the determineNextState() 

method is implemented. The run() method is implemented 

only in the base class and is responsible for the selection of 

the active behavior, using determineNextState(), and for its 

execution. To change the active behavior, the method 

changeBehaviour(Behaviour*), implemented in the Role 

base class, is used. 

During open play, the CAMBADA agents use only three 

roles: RoleGoalie, RoleSupporter and RoleStriker. The 

RoleGoalie is activated for the goalkeeper. RoleSupporter 

moves according to its strategic positioning. RoleStriker is 

an “active player” role. Other roles (RoleBarrier, 

RoleReplacer, RoleToucher) are used in set-pieces like 

kick-off, throw-in, goal-kick, corner-kick and free-kick. 

Further details about the developed roles and respective 

coordination mechanisms will be presented in section IV. 

Behaviors are also organized as derived classes from an 

abstract class Behavior. It has three important methods. 

The first one is calculate() whose implementation, in 

derived classes, determines the parameter values of the 

low-level command that this behavior will execute (linear 

and angular velocities and kicking parameters). The 

second method is execute(), which sends previously 

computed parameters to the low-level computation 

modules. The separation of calculation and execution 

enables the agent to reason on the expected result of the 

commands while deciding which one to execute. Finally, 

grabberControll() controls the grabber mechanism 

automatically. 

The set of behaviors that are implemented in the 

CAMBADA agent are adapted to its catadioptric 

omnidirectional vision and holonomic driving systems. 

The combination of these technologies enhances the set of 

possible behaviors when compared to a differential drive 

robot or to an holonomic drive robot with a limited field of 

view. 

The behavior bMove uses two symbolic parameters: the 

target position where to move; and the position which the 

CAMBADA player should be facing in its path to the 

target. The symbols used are OBall, TheirGoal and 

OurGoal. The other moving behavior, bMoveToAbs, 

allows the movement of the player to an absolute position 

in the game field, and also allows the player to face any 

given position. Those moving behaviors may activate the 

functions of avoiding obstacles and avoiding the ball (used 

during the game repositions to avoid collisions with the 

ball). The bPassiveInter behavior moves the player to the 

closest point in the ball trajectory and waits there for the 

ball. The bDribble behavior is used to dribble the ball to a 

given relative player direction. The bCatchBall behavior is 

used to receive a pass. The player aligns itself with the ball 

path and, when the ball is close, moves backwards to 

soften the impact and more easily engage the ball. The 

bKick behavior is used to kick the ball accurately to one 

3D position, either for shooting to goal or passing to a 

teammate. Preparing for the kick involves determining the 

kick direction and power. Polynomial functions, whose 

coefficients were determined by experimentation, are used 

to compute kick power based on distance to target. 

Different functions are used according to the expected 

number of ball bounces, given the distance. Finally, 

bGoalieDefend is the main behavior of the goalie. 

III. INFORMATION SHARING AND INTEGRATION 

Sharing perceptional information in a team can improve 

the accuracy of world models [5]. Sharing internal state 

can improve the team coordination. Therefore, information 

sharing and integration is one of the key aspects in multi-

robot teams. 

In CAMBADA, each robot uses some of the perceptions 

of the other robots, obtained through the RTDB, to 

improve its knowledge about the current positions and 

velocities of the other robots and of the ball. It is very 

important for our coordination model to keep an accurate 

estimate of the absolute position of the ball by each robot. 

The role assignment algorithm is based on the absolute 

positions of the robot and of its teammates.  The 

teammates’ positions are not obtained through the vision 

system and rely completely on the communicated 

estimated self positions of others. 

Each agent communicates its own absolute position and 

velocity to all teammates as well as its ball information 

(position, velocity, visibility and engagement in robot), 

current role and current behavior. 

The sharing of own absolute position and velocity is 

needed first of all because the vision system of the agents 

currently cannot detect the localization of the teammates. 

The vision system only detects obstacles but it doesn’t try 

to detect individual robots within the detected obstacles 

nor does it try to determine if they are teammates or 

opponents. The absolute position of teammates is 

necessary to the strategy of our team, as the information is 

used to define our formation/strategy. So each robot trusts 

the estimated self positions of teammates that are 

communicated through the RTDB. 



  

Multi-robot ball position integration has been used in 

the middle-size league by several teams [27][7]. In 

CAMBADA, multi-robot ball position integration is used 

to maintain an updated estimate of the ball position, when 

the vision subsystem cannot detect the ball, and to validate 

robot's own ball position estimate, when the vision 

subsystem detects a ball. 

 

       
(a)                                                         (b) 

 

Fig. 3. Multi-robot ball position integration 

 

Currently, a simple integration algorithm is used. When 

the agent doesn’t see the ball, it analyzes the ball 

information of playing teammates. The analysis consists in 

the calculation of the mean and standard deviation of the 

ball positions, then discarding the values considered as 

outliers of ball position, and finally using the ball 

information of the teammate that has a shorter distance to 

the ball. To determine if the agent sees a fake ball, i.e., to 

validate the robot's own perception, we use a similar 

algorithm. 

Communication is also used to convey the coordination 

status of each robot allowing robots to detect 

uncoordinated behavior, for example, several robots with 

the same exclusive role, and to correct this situation 

reinforcing the reliability of coordination algorithms. 

The communication between the base station and the 

robots informs the robots of the active play mode (decided 

by the referee). During development, the base station can 

be used to control several robotic agent characteristics like 

fixed roles, manually activated self-positioning, etc, all 

managed through the RTDB. 

IV. TEAM COORDINATION 

The coordination model of the CAMBADA team is 

based on notions like strategic positioning, role and 

formation. These notions and related algorithms have been 

introduced and/or extensively explored in the RoboCup 

Soccer Simulation League [25][21]. In order to apply such 

algorithms in the Middle-Size League, several changes had 

to be introduced. The approach is presented in detail in 

this section. 

A. Formations and strategic positionings 

A formation defines a movement model for the robotic 

players. Formations are sets of strategic positionings, 

where each positioning is a movement model for a specific 

player. The assignment of players to specific positionings 

is dynamic, and is done according to some rules described 

below. Each positioning is specified by three elements: 

− Home position, which is the target position of the 

player when the ball is at the centre of the field 

− Region of the field where the player can move, and 

− Ball attraction parameters, used to compute the target 

position of the player in each moment based on the 

current ball position 

All these items of information are given in a strategy 

configuration file. Using different home positions and 

attraction parameters for the positionings allows a simple 

definition of defensive, wing, midfielder and attack 

strategic movement models. Fig. 4 shows the formation of 

the team used in RoboCup’2008 for several ball positions. 

The definition of formation in terms of strategic 

positionings was introduced in the SBSP model [21] for 

the Soccer Simulation League. This model also introduced 

specific notions of tactic and strategy, which are currently 

not used in CAMBADA. 

 

 
 

Fig. 4. Target player positions for several different ball positions 

 

B. Roles in open play 

As mentioned before, the CAMBADA players use only 

three roles in play-on mode: RoleGoalie, activated for the 

goalkeeper, RoleSupporter and RoleStriker. RoleStriker is 

an “active player” role. It tries to catch the ball and score 

goals. The striker activates several behaviors that try to 

engage the ball (bMove, bMoveToAbs), get into the 

opponent’s side avoiding obstacles (bDribble) and shoot to 



  

the goal (bKick). The bKick behavior can perform 180º 

turns while keeping possession of the ball. 

In a consistent role assignment, only one player at a time 

takes on the role of striker. The striker is helped by other 

teammates which take on RoleSupporter [13]. Supporters 

maintain their target positions as determined by their 

current positioning assignments and the current ball 

position. As a result, supporters accompany the striker as it 

plays along the field, without interfering. In case the ball is 

captured by the opponent, some supporter hopefully will 

be in a good position to become the new striker. 

Occasionally, supporters can take a more active behavior. 

This happens when the striker can’t progress with the ball 

towards the opponent goal and, instead, the ball remains 

behind the striker for more than some pre-defined time 

(e.g. 2 seconds in the adopted configuration). In this case, 

the closest supporter to the ball also approaches the ball, in 

some sense acting as “backup striker”. 

C. Role and positioning assignment 

The play-on decision that assigns roles and positionings 

to the active players is performed using an algorithm 

resembling DPRE [22], but with the innovation of 

considering different priorities for the different roles and 

positionings, so that the most important ones are always 

covered. This is an important feature since the number of 

available players varies as a result of several common 

situations in the MSL, namely hardware and software 

malfunctions and referee orders. 

The algorithm is presented in Fig. 5. Consider a 

formation with N positionings and a team of K ≤ N 

available field players (not counting the goal-keeper which 

has a different mechanical configuration and therefore a 

fixed role). To assign the role and positioning to each 

robot, the distances of each of the robots to each of the 

target positions are calculated. 

Then the striker role is assigned to the robot that is 

closest to the highest priority strategic positioning, which 

is in turn the closest to the ball. From the remaining K-1 

robots, the closest to the defensive positioning (second 

highest priority) is assigned to this positioning, then the 

closest to the third level priority positioning is assigned 

next and the algorithm continues until all active robots 

have positionings and roles assigned. This algorithm 

results in the striker role having top priority, followed by 

the defensive positioning, followed by the other supporter 

positionings. The assignment algorithm may be performed 

by the coach agent in the base station, ensuring a 

coordinated assignment result, or locally by each robot, in 

which case the inconsistencies of world models may lead 

to unsynchronized assignments. In the latest competitions, 

positioning assignments were carried out by the coach at 

intervals of 1 second and the role assignments were 

individually carried out by each player. 

D. Passes 

Passing is a coordinated behavior involving two players, 

in which one kicks the ball towards the other, so that the 

other can continue with the ball. Until now, MSL teams 

have shown limited success in implementing and 

demonstrating passes. In RoboCup 2004, some teams had 

already implemented passes, but the functionality was not 

robust enough to actually be useful in games [15] [26]. The 

CoPS team also support pass play [28]. 

 
Algorithm: role and positioning assignment 

Input: 

  POS - array of N positionings 

  BallPos - ball position 
Input/output: 

  PL – array of K active players (K =< N) 
Local: 

  TP - array of N target positions 
{ 

  clearAssigments(PL); 

  TP = calcTargetPositions(POS,BallPos); 

  for each POS[i], i ∈∈∈∈ 1..N, in  
    descending order of priority  
  { 
    if there is no free player 
      then return; 

    p = the free player closest to TP[i]; 
    PL[p].positioning = i; 

    PL[p].targetPosition = TP[i]; 

    if POS[i] has highest priority 

      then PL[p].role = striker; 

      else PL[p].role = supporter; 
  } 
  return; 
} 
 

Fig. 5. CAMBADA Positioning and role assignment algorithm 

 

Two player roles have recently been developed for 

coordinated passes in the CAMBADA team. In the general 

case, the player running RoleStriker may decide to take on 

RolePasser, choosing the player to receive the ball. After 

being notified, the second player takes on the 

RoleReceiver. 

These roles have not been used yet for open play in 

international competition games, but they have been 

demonstrated in RoboCup’2008 MSL Free Technical 

Challenge and a similar mechanism has been used for 

corner kicks (see below). In the challenge, two robots 

alternately took on the roles of passer and receiver until 

one of them was in a position to score a goal. The 

sequence of actions on both players is described in Table I. 

They start from their own side of the field and, after each 

pass, the passer moves forward in the field, then becoming 

the receiver of the next pass. The coordination between 

passer and receiver is based on passing flags, one for each 

player, which can take the following values: READY, 

TRYING_TO_PASS and BALL_PASSED. In the case of 

a normal game, another pass coordination variable would 

identify the receiver. 

 
Table I – Coordinated actions in a pass 

RolePasser RoleReceiver 

PassFlag ← TRYING_TO_PASS  

Align to receiver Align to Passer 

 PassFlag ← READY 

Kick the ball  

PassFlag ← BALL_PASSED  

Move to next position Catch ball 

 



  

E. Set plays 

Another methodology implemented in CAMBADA is 

the use of coordinated procedures for set plays, i.e. 

situations when the ball is introduced in open play after a 

stoppage, such as kick-off, throw-in, corner kick, free kick 

and goal kick. Set play procedures define a sequence of 

behaviors for several robots in a coordinated way. For that 

purpose, the involved players take on a specific roles. 

RoleToucher and RoleReplacer are used to overcome 

the indirect rule in the case of indirect set pieces against 

the opponent. The purpose of RoleToucher is to touch the 

ball and leave it to the RoleReplacer player. The replacer 

handles the ball only after it has been touched by the 

toucher. This scheme allows the replacer to score a direct 

goal if the opportunity arises. 

Two toucher-replacer procedures are implemented. In 

the case of corner kicks, the toucher passes the ball to the 

replacer and the replacer continues with the ball (see 

pseudo-code in Fig. 6). The passing algorithm is as 

explained above. 

 
Algorithm: RoleReplacer // for corner kicks 

{ 
if I have Ball 

  then shoot to opponent goal 

  else if Ball close to me 

    then move to Ball 

    else 

      if Toucher already passed ball 

        then catch Ball 

        else wait that Ball is passed 

} 
 

Fig. 6. Replacer role algorithm for corner kicks 

 

Another toucher-replacer procedure is used in the case 

of throw-in, goal kick and free kick set plays. Here, the 

toucher approaches and touches the ball pushing it towards 

the replacer until the ball is engaged by the replacer, then 

withdraws leaving the ball to the replacer. The replacer 

also moves towards the ball, grabs it, waits that the toucher 

moves away and then shoots to the opponent goal. It 

should be noted that both the toucher and the replacer 

position themselves on the shoot line, so that, as soon as 

the toucher moves away, the replacer is ready to shoot. For 

the kick-off, a similar procedure is followed, but without 

reference to the shoot line, since the involved robots must 

be in their own side of the field. 

Finally, in the case of set pieces against CAMBADA, 

RoleBarrier is used to protect the goal from a direct shoot. 

The line connecting the ball to the own goal defines the 

barrier positions. One player places itself on this line, as 

close to the ball as it is allowed. Two players place 

themselves near the penalty area. One player is placed near 

the ball, 45º degrees from the mentioned line, so that it can 

observe the ball coming into play and report that to 

teammates. Finally, one player positions itself in such a 

way that it can oppose to the progression of the ball 

through the closest side of the field. The placement of 

players is illustrated in Fig. 7. 

 

 
 

Fig. 7. Placement of RoleBarrier players 

 

The assignment of the RoleBarrier, RoleReplacer and 

RoleToucher roles is executed by sorting the agents 

according to their perceived distances to the ball and 

selecting the closest ones, up to the maximum number of 

agents in each role. When selecting a role like the 

RoleReplacer, which is exclusive, the agent looks at the 

other teammates role decisions and if it finds a 

RoleReplacer with a lower uniform number it will never 

select that role. A similar approach is performed for the 

other exclusive roles. This assignment is always performed 

locally by each robot. 

V. PERFORMANCE EVALUATION 

The CAMBADA team participated and won the MSL 

championship in RoboCup’2008 (Suzhou, China, July 

2008). Part of the performance evaluation results presented 

in this section are obtained by analyzing log files and 

videos of games in this championship. In addition, 

RoboCup’2008 competition results will also be presented. 

As the CAMBADA team made it to the final, it was 

scheduled to play 13 games. One of them was not played 

due to absence of the opponent. For two other games, the 

log files were lost. The results presented in the following 

are therefore extracted from log files of 10 games. 

Table II shows the average percentage of time any given 

player spends in each role, with respect to the total time 

the player is active in each game. It can be seen that 

players spend a considerable amount of time in set plays 

(44% of the total time of the player in a game, including 

the RoleParking, which moves the player to a position 

outside the field at the end of the first half and at the end of 

the game). This reflects the current contingencies of MSL 

games. More time is spent in set plays against CAMBADA 

(28.4%, since usually four players take the barrier role in 

these situations) than in set plays against the opponent 

(11.5% in toucher and replacer roles). According to the 

logs, players change roles 2.017 ± 1.022 times per minute. 

As role assignment is distributed (implicit coordination), it 

occasionally happens that two players take on the role of 

striker at the same time. On average, all inconsistencies in 

the assignment of the striker role have a combined total 

duration of 20.9 ± 27.4 seconds in a game (~30 minutes). 

The high standard deviation results mainly from one game 

in which, due to magnetic interference, localization errors 

were higher than normal. In that specific game, role 

inconsistency occurred 45 times for a total of 101 seconds. 



  

 
Table II – Average time spent by players in different  

roles (in %) and respective standard deviation 

Role %time 

Striker 10.4 ± 5.2 

Supporter 45.2 ± 10.0 

Toucher 5.9 ± 4.1 

Replacer 5.6 ± 4.6 

Barrier 28.4 ± 6.5 

Parking 4.4 ± 6.4 

 

Table II shows the average percentage of time any given 

player spends running each implemented behavior. In 

particular, the second column of the table shows such 

percentages irrespective of the role taken. The third 

column shows the percentages of time in each behaviour, 

considering only the periods in which players are taking 

the striker role. These values highlight clearly the specific 

features of the striker: much less time moving to absolute 

positions, since the striker most of the time ignores its 

strategic positioning assignment; much more time in 

moving (to the ball), dribbling and kicking. 

 
Table III – Average time spent by players running different  

behaviors (in %) and respective standard deviation 

Behavior %time 

(any role) 

%time 

(striker) 

bMove 4.9 ± 3.0 43.7 ± 4.4 

bMoveToAbs 74.7 ± 12.6 25.3 ± 4.7 

bDribble 1.4 ± 1.2 13.4 ± 4.5 

bKick 1.8 ± 1.5 14.6 ± 7.7 

bCatchBall 0.2 ± 0.3  

bPassiveInter 0.3 ± 0.2 2.9 ± 1.1 

bStopRobot 14.7 ± 7.0  

 

Concerning strategic positionings, relevant mainly to 

supporters as explained above, the average distance of the 

player to its target position (given by the assigned strategic 

positioning and the ball position) is 1.381 ± 0.477 m. The 

strategic positioning assignment for each player is changed 

on average 9.829 ± 2.228 times per minute. 

As the CAMBADA players to not track the positions 

and actions of the opponent players, it is not possible to 

compute an exact measure of ball possession. However, 

the game logs enable to compute some related measures, as 

shown in Table IV. The closest player to the ball is at an 

average distance of 1.2 m from the ball (in a field of 18 m 

× 12 m). The ball is perceived by at least one player during 

91.7% of the time. The ball is engaged in a player’s 

grabber device 9.8% of the time. 

 
Table IV – Measures related to ball possession 

Average minimum distance to 

the ball (meters) 

1.246 ± 0.325  

Time with ball visible (%)  91.7 ± 3.5 

Time with ball engaged (%)  9.8 ± 4.7  

 

Fig. 8 shows the percentage of time the ball was in 

different regions of the field in the 10 games played by 

CAMBADA for which we have logs. We see that the ball 

was in the opponent’s side for 73% of time, and that the 

game was mainly being played in centre of the field, 

towards the opponent’s side. 

 

 
 
Fig. 8. Percentage of time the ball was in different locations of the field 

in 10 games (CAMBADA on the left) 

 

Fig. 9 shows the location in the field from where the ball 

was shot to goal in the RoboCup’2008 final (CAMBADA-

TechUnited). 

 

 
 
Fig. 9. Shoot locations in the final CAMBADA (left) - TechUnited 

(right) game in RoboCup 2008 (successful shoots are simple circles and 

goals are sun-like forms) 

 

Table V presents the competition results of CAMBADA 

in RoboCup’2008. The team won 11 out of 13 games, 

scoring a total of 73 goals and suffering only 11 goals. 

 
Table V –  Competition results 

 #games 

#goals 

scored 

#goals 

suffered #points 

Round-robin 1 5 41 2 15 

Round-robin 2 4 16 3 9 

Round-robin 3 2 5 2 3 

Semi-final 1 4 3 3 

Final 1 7 1 3 

Total 13 73 11 33 

VI. CONCLUSION 

The data structures used for world state representation 

clearly separate the raw sensor information from the world 

model that results of integrating local and shared 



  

information. This architecture is easily adaptable to the 

addition of new sensors. 

The adaptation of SBSP and DPRE [22][21] to the 

Middle-Size League environment resulted in a coordinated 

behavior of the team that contributed to its recent 

successes. The robot malfunctions decrease the number of 

field players, but the positioning/role assignment algorithm 

maintains a competitive formation with fewer players in 

the field. Set plays were very efficient as several of the 

CAMBADA goals were the direct result of their activation. 

Following steady progress since the start of 

development of CAMBADA in 2003, the team won the 

RoboCup’2008 championship. This good result is largely 

due to the developed coordination methodologies, as the 

CAMBADA robots are among the slowest of the 

competition. 

ACKNOWLEDGMENT 

The CAMBADA team was funded by Portuguese 

Government – FCT, POSI/ROBO/ 43908/2002 

(CAMBADA) and currently FCT, PTDC/EIA/70695/2006 

(ACORD). 

REFERENCES 

[1] Almeida, L., F. Santos, T. Facchinetti, P. Pedreira, V. Silva and L. 

Seabra Lopes, Coordinating Distributed Autonomous Agents with a 

Real-Time Database: The CAMBADA Project, Computer and 

Information Sciences -- ISCIS 2004: 19th International 

Symposium, Proceedings, Aykanat, Cevdet; Dayar, Tugrul; 

Korpeoglu, Ibrahim, eds., Lecture Notes in Computer Science, Vol. 

3280, 2004, pp. 876-886. 

[2] Arbatzat, M., et al.: Creating a Robot Soccer Team from Scratch: 

the Brainstormers Tribots, Proceedings of Robocup 2003, Padua, 

Italy, 2003. 

[3] Azevedo, J.L., M.B. Cunha, L. Almeida, Hierarchical Distributed 

Architectures for Autonomous Mobile Robots: a Case Study. Proc. 

ETFA2007- 12th IEEE Conference on Emerging Technologies and 

Factory Automation, Patras, Greece, 2007, pp. 973-980. 

[4] Cunha, B., J. Azevedo, N. Lau, L. Almeida, Obtaining the Inverse 

Distance Map from a Non-SVP Hyperbolic Catadioptric Robotic 

Vision System, U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, 

editors, RoboCup-2007: Robot Soccer World Cup XI, LNAI, 

Springer Verlag, Berlin, 2008. 

[5] Dietl, M., J.-S. Gutmann and B. Nebel, Cooperative Sensing in 

Dynamic Environments, Proceedings of the IEEE/RSJ 

International Conference on Intelligent Robots and Systems 

(IROS'01), Maui, Hawaii. 

[6] EtherCAT Robots win German Open, Press Release, EtherCAT 

Technology Group, 8 May 2008, at 

http://ethercat.org/pdf/english/etg_032008.pdf 

[7] Ferrein, A., L. Hermanns  and G. Lakemeyer, Comparing Sensor 

Fusion Techniques for Ball Position Estimation, RoboCup 2005: 

Robot Soccer World Cup IX, A. Bredenfeld, A. Jacoff, I. Noda and 

Y. Takahashi, eds., Lecture Notes in Computer Science, 4020, 

Springer, 2006, pp. 154-165. 

[8] Ferreira, J.; Pedreiras, P.; Almeida, L.; Fonseca, J.A. The FTT-

CAN protocol for flexibility in safety-critical systems, IEEE Micro,  

22 (4), 2002, pp. 46-55.  

[9] Figueiredo, J., Lau, N., Pereira, A. Multi-Agent Debugging and 

monitoring framework, Proc. First IFAC Workshop on 

Multivehicle Systems (MVS'06), Brasil, October, 2006. 

[10] Hafner, R., S. Lange, M. Lauer, and M. Riedmiller (2008) 

Brainstormers Tribots Team Description, RoboCup International 

Symposium 2008, CD Proceedings, Suzhou, China. 

[11] Kok, J.; Spaan, M. and Vlassis, N., Non-communicative multi-

robot coordination in dynamic environments. Robotics and 

Autonomous Systems, 50 (2-3), Elsevier Science, 2005, pp. 99-114. 

[12] Kopetz, H., Real-Time Systems Design Principles for Distributed 

Embedded Applications, Kluwer, 1997. 

[13] Lau, N., L., Seabra Lopes, G. Corrente (2008) CAMBADA: 

Information Sharing and Team Coordination, Autonomous Robot 

Systems and Competitions: Proceedings of the Eigth Conference. 2 

April 2008, Aveiro, Portugal, Universidade de Aveiro, p. 27-32. 

[14] Lauer, M., S. Lange and M. Riedmiller, Calculating the perfect 

match: An efficient and accurate approach for robot self-

localisation, RoboCup 2005: Robot Soccer World Cup IX, A. 

Bredenfeld, A. Jacoff, I. Noda and Y. Takahashi, eds., LNCS 4020, 

Springer, 2006. 

[15] Lima, P, L. Custódio, I. Akin, A. Jacoff, G. Kraezschmar, B. Kiat 

Ng, O. Obst, T. Röfer, Y. Takahashi, C. Zhou (2005) RoboCup 

2004 Competitions and Symposium: A Small Kick for Robots, a 

Giant Score for Science, AI-Magazine, 6 (2), 2005, p. 36-61. 

[16] MSL Technical Committee 1997-2008, Middle Size Robot League 

Rules and Regulations for 2008. Draft Version - 12.2 20071109, 

November 9, 2007. 

[17] Neves, A.; Corrente, G. and Pinho A., An omnidirectional vision 

system for soccer robots. Progress in Artificial Intelligence,  

Lecture Notes in Computer Science. Berlin, nº 4874, Springer, 

2007, pp. 499-507. 

[18] Oubbati, M., M. Schanz, T. Buchheim, P. Levi (2006) Velocity 

Control of an Omnidirectional RoboCup Player with Recurrent 

Neural Networks, A. Bredenfeld, A. Jacoff, I. Noda, Y. Takahashi 

(Eds.), RoboCup 2005: Robot Soccer World Cup IX, Lecture Notes 

in Computer Science, vol. 4020, 691-701. 

[19] Pedreiras, P., F. Teixeira, N. Ferreira, L. Almeida, A. Pinho, F. 

Santos, Enhancing the reactivity of the vision subsystem in 

autonomous mobile robots using real-time techniques, RoboCup-

2005: Robot Soccer World Cup IX, I. Noda, A. Jacoff, A. 

Bredenfeld, and Y. Takahashi, eds., Lecture Notes in Computer 

Science, 4020, Springer, Berlin, 2006, pp. 371-383. 

[20] Pedreiras, P.; Almeida, L., Task Management for Soft Real-Time 

Applications Based on General Purpose Operating Systems, 

Robotic Soccer, edited by: Pedro Lima, Itech Education and 

Publishing, Vienna, Austria, 2007, pp. 598-607. 

[21] Reis, L.P. and N. Lau, and E.C. Oliveira, Situation Based Strategic 

Positioning for Coordinating a Team of Homogeneous Agents, 

Balancing Reactivity and Social Deliberation in Multiagent 

Sytems: From RoboCup to Real Word Applications, M. 

Hannenbauer, J. Wendler, and E. Pagello eds., LNAI 2103, 

Springer-Verlag, 2001, pp. 175-197. 

[22] Reis, L.P. and N. Lau, FC Portugal Team Description: RoboCup 

2000 Simulation League Champion, RoboCup-2000: Robot Soccer 

World Cup IV, P. Stone, et al. eds., LNCS 2019, Springer, 2001, 

pp. 29-40. 

[23] Riedmiller, M. Gabel, T., On Experiences in a Complex and 

Competitive Gaming Domain: Reinforcement Learning Meets 

RoboCup, Proceedings of the 3rd IEEE Symposium on 

Computational Intelligence and Games (CIG 2007). IEEE Press, 

April 2007, pp. 17-23. 

[24] Sato, Y., S. Yamaguchi, Y. Kitazumi, Y. Ogawa, Y. Yonemura, T. 

Ueoka, Y. Wada, Y. Takemura, A.A.F. Nassiraei, I. Godler, K. Ishii 

and H. Miyamoto (2008) Hibikino-Musashi Team Description 

Paper, RoboCup International Symposium 2008, CD Proceedings, 

Suzhou, China. 

[25] Stone, P. and M. Veloso, Task Decomposition, Dynamic Role 

Assignment and Low Bandwidth Communication for Real Time 

Strategic Teamwork, Artificial Intelligence, vol. 110 (2), 1999, pp. 

241-273. 

[26] van der Vecht, B., and P. Lima (2005) Formulation and 

Implementation of Relational Behaviours for Multi-robot 

Cooperative Systems, RoboCup 2004: Robot Soccer World Cup 

VIII, Springer LNCS Volume 3276/2005, pp 516-523. 

[27] Weigel, T. W. Auerbach, M. Dietl, B. Dümler, J.S. Gutmann, K. 

Marko, K. Müller, B. Nebel, B. Szerbakowski and M. Thiel, CS 

Freiburg: Doing the Right Thing in a Group, RoboCup 2000: Robot 

Soccer World Cup IV, P. Stone, G. Kraetzschmar, T. Balch, eds., 

Springer-Verlag, 2001, pp. 52-63. 

[28] Zweigle, O., R. Lafrenz, T. Buchheim, U.-P. Käppeler, H. Rajaie, 

F. Schreiber and P. (2006) Levi Cooperative agent behavior based 

on special interaction nets, Intelligent Autonomous Systems 9, T. 

Arai, R. Pfeifer, T. Balch, and H. Yokoi, Eds. Amsterdam, The 

Netherlands: IOS Press. 

 

 



136


