
Self-configuration of an Adaptive TDMA
wireless communication protocol

for teams of mobile robots

Frederico Santos1, Gustavo Currente2, Lúıs Almeida2,
Nuno Lau2 and Lúıs Seabra Lopes2

1 DEE, Instituto Superior de Engenharia de Coimbra,
Rua Pedro Nunes, 3030-199 Coimbra, Portugal

fred@isec.pt
2 IEETA - DETI, Universidade de Aveiro,

Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
{gustavo, lda, nunolau, lsl}@ua.pt

Abstract. Interest on using mobile autonomous agents has been grow-
ing, recently, due to their capacity to cooperate for diverse purposes, from
rescue to demining and security. However, such cooperation requires the
exchange of state data that is time sensitive and thus, applications should
be aware of data temporal coherency. This paper describes the commu-
nication and coordination architecture of the agents that constitute the
CAMBADA (Cooperative Autonomous Mobile roBots with Advanced
Distributed Architecture) robotic soccer team developed at the Univer-
sity of Aveiro, Portugal. This architecture is built around a partially
replicated real-time database refreshed in the background, transparently
to the higher software layers. The paper presents the communication
mechanisms that were devised to support the real-time database man-
agement and focuses on the self-configuration of the protocol, according
to the current number of active team members.

1 Introduction

Coordinating several autonomous mobile robotic agents in order to achieve a
common goal is an active topic of research [3]. This problem can be found in
many robotic applications, either for military or civil purposes, such as search
and rescue in catastrophic situations, demining or maneuvers in contaminated
areas.

The technical problem of building an infrastructure to support the perception
integration for a team of robots and subsequent coordinated action is common
to the above applications. One recent initiative to promote research in this field
is RoboCup [5] where several autonomous robots have to play football together
as a team, to beat the opponent. We believe that researching ways to solve the
perception integration problem in RoboCup is also very relevant to real-world
applications.



Currently, the requirements posed on such teams of autonomous robotic
agents have evolved in two directions. On one hand, robots must move faster
and with accurate trajectories to close the gap with the dynamics of the pro-
cesses they interact with, e.g., a ball can move very fast. On the other hand,
robots must interact more in order to develop coordinated actions more effi-
ciently, e.g., only the robot closer to the ball should try to get it while other
robots should move to appropriate positions. The former requirement demands
for tight closed-loop motion control while the latter demands for an appropriate
communication system that allows building a global information base to support
cooperation.

In this paper we describe the communication and coordination architecture
of the robotic agents that constitute the CAMBADA middle-size robotic soccer
team of the University of Aveiro, Portugal, which is well suited to support the
requirements expressed above. The software architecture is based on a real-time
database in which the state values of other agents are updated transparently
to the higher software layers, using an adequate communication protocol. This
paper focuses on such protocol that dynamically adapts to the conditions of the
communication channel and to the current number of active agents in the team.
Particularly, some results are shown that illustrate the latter self-configuration
capability.

2 Computing/Communications Architecture

The computing architecture of the robotic agents is layered with two levels as
illustrated in Fig. 1. The higher level is built around a main processing unit
that handles both the external communication with other agents as well as the
local vision system. A distributed low-level sensing/actuating system handles
the robot attitude (holonomic motion control), odometry, kicking and power
monitoring. The latter one is out of the scope of this paper.

Fig. 1. CAMBADA robotic architecture

The main processing unit is currently implemented on a laptop that delivers
sufficient computing power while offering standard interfaces to connect the other



systems, namely USB, FireWire and WiFi. The wireless interface is either built-
in or added as a PCMCIA card. The laptop runs the Linux operating system
with the timeliness support necessary for time-stamping, periodic transmissions
and task temporal synchronization provided by a specially developed user-level
real-time scheduler, the Pman – Process Manager [1]. This approach provides
a sufficient timeliness support for soft real-time applications, such as multiple
robot coordination, and allows profiting from the better development support
provided by general purpose operating systems [2].

The agents that constitute the team communicate with each other by means
of an IEEE 802.11b wireless network as depicted in Fig. 2. The communication
is managed, i.e., using a base station, and it is constrained to using a single
channel, shared by, at least, both teams in each game. In order to improve the
timeliness of the communications, our team uses a further transmission control
protocol that minimizes collisions of transmissions within the team. Each robot
regularly broadcasts its own data while the remaining ones receive such data and
update their local structures. Beyond the robotic agents, there is also a coaching
and monitoring station connected to the team that allows following the evolution
of the robots status on-line and issuing high level team coordination commands.

Fig. 2. Global communications architecture

3 RTBD - The Real-Time Database

Similarly to other teams [4, 6], our team software architecture emphasizes cooper-
ative sensing as a key capability to support the behavioral and decision-making
processes in the robotic players. A common technique to achieve cooperative
sensing is by means of a blackboard [7, 8], which is a database where each agent
publishes the information that is generated internally and that maybe requested,
by others. However, typical implementations of this technique seldom account
for the temporal validity (coherence) of the contained information with adequate
accuracy. This is a problem when robots move fast because their state informa-
tion degrades faster, too. Without adequate refreshing, the data in a blackboard
may easily lose temporal validity thus becoming too old to be useful. Another
problem of typical implementations is that they are based on the client-server
model and thus, when a robot needs a datum, it has to communicate with the
server holding the blackboard, introducing an undesirable delay. To avoid this



delay, we use two features: firstly, the dissemination of the local state data is
carried out using multicast, according to the producer-consumer cooperation
model, secondly, we replicate the blackboard according to the distributed shared
memory model [9]. In this model, each node has local access to all the process
state variables that it requires. Those variables that are remote have a local
image that is updated automatically in the background by the communication
system (Fig. 3).

Fig. 3. Each agent broadcasts periodically its subset state data that might be required
by other agents

We call this replicated blackboard the Real-Time DataBase (RTDB), simi-
larly to the concept presented in [10], which holds the state data of each agent
together with local images of the relevant state data of the other team mem-
bers. A specialized communication system triggers the required transactions at
an adequate rate to guarantee the freshness of the data.

4 Communication Among Agents

As referred in section 2, agents communicate using an IEEE 802.11 network,
sharing a single channel with the opposing team and using managed commu-
nication (through the access point). This raises several difficulties because the
access to the channel cannot be controlled [11] and the available bandwidth is
roughly divided by the two teams.

Therefore, the only alternative left for each team is to adapt to the current
channel conditions and reduce access collisions among team members. This is



achieved using a dynamic adaptive TDMA transmission control, with a prede-
fined round period called team update period (Ttup) that sets the responsiveness
of the global communication. Within such round, there is one single slot allocated
to each running team member so that all slots in the round are separated as much
as possible (Fig. 4). This allows calculating the target inter-slot period Txwin as
Ttup/N , where N is the number of running agents. The transmissions gener-
ated by each running agent are scheduled within the communication process,
according to the production periods specified in the RTDB records. Currently
a rate-monotonic scheduler is used. When the respective TDMA slot comes, all
currently scheduled transmissions are piggybacked on one single 802.11 frame
and sent to the channel. The required synchronization is based on the reception
of the frames sent by the other agents during Ttup. With the reception instants
of those frames and the target inter-slot period Txwin it is possible to generate
the next transmission instant. If these delays affect all TDMA frames in a round,
then the whole round is delayed from then on, thus its adaptive nature. Fig. 5
shows a TDMA round indicating the slots allocated to each agent and the adap-
tation of the round duration. The adaptive TDMA protocol was first proposed
by the authors in [12].

Fig. 4. TDMA round

Fig. 5. Adaptive TDMA round

When a robot transmits at time tnow it sets its own transmission instant
tnext = tnow + Ttup, i.e. one round after. However, it continues monitoring the
arrival of the frames from the other robots. When the frame from robot k arrives,
the delay δk of the effective reception instant with respect to the expected instant
is calculated. If this delay is within a validity window [0,∆], with ∆ being a global
configuration parameter, the next transmission instant is delayed according to
the longest such delay among the frames received in one round (Fig. 5), i.e.,



tnext = tnow + Ttup + maxk(δk)

On the other hand, if the reception instant is outside that validity window,
or the frame is not received, then δk is set to 0 and does not contribute to update
tnext.

The practical effect of the protocol is that the transmission instant of a
frame in each round may be delayed up to ∆ with respect to the predefined
round period Ttup. Therefore, the effective round period will vary between Ttup

and Ttup + ∆. When a robot does not receive any frame in a round within the
respective validity windows, it updates tnext using a robot specific configuration
parameter βk in the following way

tnext = tnow + Ttup + βk with 0 ≤ βk ≤ ∆

This is used to prevent a possible situation in which the robots could all
remain transmitting but unsynchronized, i.e. outside the validity windows of
each other, and with the same period Ttup. By imposing different periods in this
situation we force the robots to resynchronize within a limited number of rounds
because the transmissions will eventually fall within the validity windows of each
other.

One of the limitations of the adaptive TDMA protocol as proposed in [12] is
that the number of team members was fixed, even if the agents were not active,
causing the use of Txwin values smaller than needed. Notice that a smaller Txwin

increases the probability of collisions in the team. Therefore, a self-configuration
capability was added to the protocol, to cope with variable number of team
members. This is the specific mechanism proposed in this paper, which supports
the dynamic insertion / removal of agents in the protocol. Currently, the Ttup

period is still constant but it is divided by the number of running agents at
each instant, maximizing the inter-slot separation between agents Txwin at each
moment.

However, the number of active team members is a global variable that must
be consistent so that the TDMA round is divided in the same number of slots
in all agents. To support the synchronous adaptation of the current number of
active team members a membership vector was added to the frame transmitted
by each agent in each round, containing its perception of the team status.

When a new agent arrives it starts to transmit its periodic information in
an unsynchronized mode. In this mode all the agents, including the new one,
continue updating its membership vector with the received frames and continue
refreshing the RTDB shared areas, too. The Txwin value, however, is not yet
adapted and thus the new agent has no slot in the round. When all the team
members reach the same membership vector, the number of active team members
is updated, so as the inter-slot period Txwin. The protocol enters then in the scan
mode in which the agents, using their slightly different values of Ttup, rotate their
relative phases in the round until they find their slots. From then on, all team
members are again synchronized. The removal of an absent agent uses a similar
process. After a predefined number of rounds without receiving frames from a



given agent, each remaining member removes it from the membership vector.
The change in the vector leads to a new agreement process similar to described
above.

Fig. 6 shows an example of the self-reconfiguration process with the dynamic
insertion and removal of agents. It shows the instants at which the packets from
the several agents in a team are received in a monitoring station, relative to
the start of the round in an arbitrary agent (agent 2 in this case). The line on
top shows the reception instants of that agent, which give us an indication of
the effective TDMA round duration. Before point A, agent 2 is alone, using a
TDMA round with 1 single slot, and at that point agent 4 joins the team and
starts transmitting. Agent 2 detects these transmissions and divides the TDMA
round in 2 slots, one for each agent. Naturally, the transmissions of agent 4 are
outside the respective validity window, thus agent 4 uses a sliding relative phase
until it reaches the right slot, at which point it stays synchronized with the team
(near flat portions of the graph). At point B, agent 4 left the team, i.e., stopped
transmitting. Agent 2 detected this situation and reconfigured the TDMA round
to 1 single slot again. The remaining situations are all similar, with agent 4 re-
joining at point C and agent 5 at point D, who leave the team at points E and
F, respectively. From D to E the TDMA round is configured to 3 slots and after
the withdrawal of agent 4, it is reconfigured to 2 slots again. Notice that the
mechanisms are fully distributed and all agents execute exactly the same code.

Fig. 6. Self-configuration of the slot time according to the number of running agents

5 Coordinating Multiple Soccer Agents

The purpose of the communication protocol described above is to support the
management of the RTDB, which is the central element for sharing information
and thus for coordination of the team of agents. In this section we present a brief
reference to some of the coordinated behaviors that are currently implemented
on top of the RTDB, thus highlighting the effectiveness of the communication.



The team can be in several different play modes, from kick off to free kick,
throw in, corner kick, etc., decided by the referee, which are broadcast among
the team by the remote station through the RTDB.

The RTDB also supports the integration of the individual agent perceptions
to improve their knowledge about the current positions and velocities of the
others robots and of the ball. It is very important for our coordination model to
keep an accurate estimation of the absolute position of the ball by each robot.
The role assignment algorithm is based on the absolute position of the robot, its
team mates and ball. Each robot determines its self localization and ball position
through its local vision system and shares it with the others through the RTDB.

Communication is also used to convey the coordination status of each agent
allowing robots to detect uncoordinated behaviors, for example, several robots
with the same exclusive role, and to correct this situation reinforcing the relia-
bility of coordination algorithms.

6 Conclusion

Cooperating robots is a field currently generating large interest in the research
community. RoboCup is one example of an initiative developed to foster research
in that area.

This paper described the computing and communication architecture of the
CAMBADA middle-size robotic soccer team being developed at the University of
Aveiro. Such architecture is based on a partially replicated real-time database,
i.e., the RTDB, which includes local state variables together with images of
remote ones. These images are updated transparently to the application software
by means of an adequate real-time management system. Moreover, the RTDB is
accessible to the application using a set of non-blocking primitives, thus yielding
a fast data access.

Earlier work from the authors led to the development of a wireless com-
munication protocol that reduces the probability of collisions among the team
members. The protocol called adaptive TDMA, adapts to the current channel
conditions, particularly accommodating periodic interference patterns. In this
paper the authors extended that protocol with on-line self-configuration capa-
bilities that allow reconfiguring the slots structure of the TDMA round to the
actual number of active team members, further reducing the collision probabil-
ity. This paper ends with a brief reference to global team coordination based on
the RTDB concept, using the described communication protocol.

Future work includes the further dynamic reconfiguration of the TDMA
round interval, i.e., the team update period, according to the communication
channel load and current number of agents in the team.

References

1. Pedreiras, P., Almeida, L.: Task management for soft real-time applications based on
general purpose operating systems. In: Proceedings of the 9th Brazilian Workshop
on Real-Time Systems, Belém, Brazil (May 2007)



2. Gopalan, K.: Real-time support in general purpose operating systems. Technical
report (2001)

3. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. MIT Press (1999)

4. Dietl, M., Gutmann, J.S., Nebel, B.: Cooperative sensing in dynamic environment.
In: Proceedings of the IROS2001 International Conference on Intelligent Robots
and Systems, Maui, Hawaii (October 2001)

5. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot
world cup initiative. In: Proceedings of the IJCAI-95 Workshop on Entertainment
and AI/Alife, Montreal (August 1995)

6. Weigel, T., Gutmann, J.S., Nebel, B., Muller, K., Dietl, M.: Cs freiburg: Sophis-
ticated skills and effective cooperation. In: Proceedings of the EEC01 European
Control Conference, Porto, Portugal (September 2001)

7. Erman, L.D., Hayes-Roth, F., Lesser, V.R., Reddy, R.: The hersay-ii speech under-
standing system: Integrating knowledge to resolve uncertainty. ACM Computing
Surveys 12(2) (1980) 213–253

8. Carver, N., Lesser, V.: The evolution of blackboard control architectures. Technical
Report UM-CS-1992-071 (1992)

9. Milutinovic, V., Stenstrom, P.: Special issue on distributed shared memory systems.
In: Proceedings of the IEEE. Volume 87. (March 1999) 399–404

10. Kopetz, H.: Real-Time Systems Design Principles for Distributed Embedded Ap-
plications. Kluwer Academic Pub (1997)

11. Decotignie, J.D., Dallemagne, P., El-Hoiydi, A.: Architecture for the intercon-
nections of wireless and wireline fieldbus. In: Proceedings of the FeT01 IFAC
Conference on Fieldbus Technologies, Nancy, France (November 2001)

12. Santos, F., Almeida, L., Pedreiras, P., Lopes, L.S., Facchinetti, T.: An adaptive
tdma protocol for soft real-time wireless communication among mobile autonomous
agents. In: Proceedings of the WACERTS04 Workshop on Architectures for Co-
operative Embedded Real-Time Systems (in conjunction with RTSS2004 - 3rd In-
ternational Symposium on Robotics and Automation), Lisbon, Portugal (December
2004)


