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Abstract. The use of single viewpoint catadioptric vision systems is a common 
approach in mobile robotics, despite the constraints imposed by those systems. 
A general solution to calculate the robot centered distances map on non-SVP 
catadioptric setups, exploring a back-propagation ray-tracing approach and the 
mathematical properties of the mirror surface is discussed in this paper. Results 
from this technique applied in the robots of the CAMBADA team (Cooperative 
Autonomous Mobile Robots with Advanced Distributed Architecture) are 
presented, showing the effectiveness of the solution.  
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1 Introduction and related work 

The use of a catadioptric omni-directional vision system based on a regular video 
camera pointed at a hyperbolic mirror is a common solution for the main sensorial 
element found in a significant number of autonomous mobile robot applications. This 
is the case of the Middle Size Robocup Competition, where most of the teams adopt 
this approach for their robots vision sub-system [1-5]. This ensures an integrated 
perception of all major target objects in the robots surrounding area, allowing a higher 
degree of maneuverability at the cost of higher resolution degradation with growing 
distances away from the robot [6] when compared to non-holonomic setups. For most 
practical applications, this setup requires the translation of the planar field of view, at 
the camera sensor plane, into real world coordinates at the ground plane, using the 
robot as the center of this system. To simplify this non-linear transformation, most 
practical approaches choose to create a mechanical geometric setup that ensures a 
symmetrical solution by means of single viewpoint (SVP) approach [1][2][5]. This 
calls for a precise alignment of the four major points comprising the vision setup: the 
mirror focus, the mirror apex, the lens focus and the center of the image sensor. It also 
demands the sensor plane to be both parallel to the ground field and normal to the 
mirror axis of revolution, and the mirror foci to be coincident with the effective 
viewpoint and the camera pinhole respectively [7]. This approach generally precludes 
the use of low cost video cameras, due to the commonly found problem of 
translational and angular misalignment between the CCD sensor and the lens plane 
and focus. In this paper we describe a general solution to calculate the robot centered 



distances map on non-SVP catadioptric setups, exploring a back-propagation ray-
tracing approach, also known as “bird's eye view”, and the mathematical properties of 
the mirror surface [8][9]. This solution effectively compensates for the misalignments 
that may result either from a simple mechanical setup or from the use of low cost 
video cameras. Results from this technique applied to the robots of the CAMBADA 
team (Cooperative Autonomous Mobile Robots with Advanced Distributed 
Architecture) are presented. 

2 The framework 

In the following discussion we will assume a specific setup comprising a catadioptric 
vision module mounted on top of a mechanical structure (figure 1a)). It includes a low 
cost Fire-I BCL 1.2 Unibrain camera with a 3.6mm focal distance inexpensive lens. 
The main characteristics of this sensor can be depicted in figure 1b).  
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Fig. 1. a) The robot setup with the top catadioptric vision system. b) The Unibrain camera CCD 
main characteristics. 

The used mirror has a hyperbolic surface, described by the following equation: 
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where y is the mirror axis of revolution and z is the axis parallel to a line that connects 
the robot center to its front. Height from the mirror apex to the ground plane is 
roughly 650mm. Some simplifications will also be used in regard with the diffraction 
part of the setup. The lens has a narrow field of view and must be able to be focused 
at a short distance. This, together with the depth of the mirror, implies a reduced 
depth of field and therefore an associated defocus blur problem [6]. Fortunately, since 
spatial resolution of the acquired mirror image is significantly reduced with distance, 
this problem has a low impact in the solution when compared with the low-resolution 
problem itself. A narrow field of view, on the other hand, also reduces achromaticity 
aberration and radial distortion introduced by the lens. Camera/lenses calibration 
procedures are a well-known problem and are widely described in the literature 
[10][11] – e.g Zhang’s method. We will also assume that the pinhole model can 
provide an accurate enough approach for our practical setup, therefore disregarding 
any radial distortion of the lens.  



3 Discussion 

3.1 Initial approach 

Lets assume a restricted setup as in fig. 2. Assumptions of this setup are as follows: 
• The origin of the coordinate system is coincident with the camera pinhole 

through which all light rays will pass; 
• i, j and k are unit vectors along axis X, Y and Z, respectively; 
• The Y axis is parallel to the mirror axis of revolution; 
• CCD major axis is parallel to the X system axis; 
• CCD plane is parallel to the XZ plane; 
• Mirror foci do not necessarily lie on the Y system axis; 
• The vector that connects the robot center to its front is parallel and have the 

same direction as the positive system Z axis; 
• Distances from the lens focus to the CCD plane and from the mirror apex to 

the XZ plane are htf and mtf respectively and can be readily available from 
the setup and from manufacturer data.  

• Point Pm(mcx, 0, mcz) is the intersection point of the mirror axis of revolution 
with the XZ plane; 

• Distance unit used throughout this discussion will be the millimeter. 
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Fig. 2. a) The restricted setup with its coordinate system axis (X, Y, Z), (mirror) and (CCD). 
The axis origin is coincident with the camera pinhole (figure objects are not drawn to scale). B( 
A random pixel in the CCD sensor plane is the start point for the back propagation ray. 

Mapping equation (1) it into the defined coordinate system, we get 

 ( ) ( ) offczcx Kmzmxy +−+−+= 221000  where  1000−= mtfkoff . (2,3) 

Assuming a randomly selected CCD pixel (Xx,Xz), at point Pp(pcx, -htf ,pcz) (fig. 2 b)),  
the back propagation ray that crosses the origin, may or may not intersect the mirror 
surface. This can be evaluated from the ray vector equation, solving for y=mtf+md, 
where md is the mirror depth, and obtaining the distance module from the mirror 



center. If this module is greater than the mirror maximum radius then the ray will not 
intersect the mirror and the selected pixel will not contribute to the distance map. 
Assuming now that this particular ray will intersect the mirror surface, we can then 
define a plane FR, normal to XZ and containing this line, equated by 

 ( )raxz αtan=  . (4) 

The line containing position vector ra,  can then be expressed as a function of X as  

 ( ) ( )raraxy αβ costan=  . (5) 

Substituting (4) and (5) into (2) we get the equation of the line of intersection between 
the mirror surface and plane FR. Pr, can then be determined from the equality 
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which can be transformed into a quadratic equation of the form 
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Having found Pr, we can now consider the plane FN (fig. 3 a)) defined by Pr and by 
the mirror axis of revolution. The angle of the normal to the mirror surface at point Pr 
can be equated from the derivative of the hyperbolic function at that point, as a 
function of |Ma|, 
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This normal line intercepts the XZ plane at point Pn. The angle between the incident 
ray and the normal at the incidence point can be obtained from the dot product 
between the two vectors, -ra and rn. Solving for φφφφrm: 
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The reflection ray vector, rt, starts at point Pr and lies on a line going through point 
Pt. Its line equation will therefore be 
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Fig. 3. a) Determining the normal to the mirror surface at point Pr and the equation for the 
reflected ray. b) (Pg) will be the point on the ground plane for the back-propagation ray. 

The point Pg can then be obtained from the mirror to ground height hmf, and from the 
ground plane and rt line equations (fig. 3 b)), which, evaluating for u, gives 
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3.2 Generalization 

The generalize this approach we must know consider the following misalignment 
factors: 1) The CCD plane may not be parallel to the XZ plane; 2) The CCD minor 
axis may not be correctly aligned with the vector that connects the robot center to its 
front; 3) The mirror axis of rotation may not be normal to the ground plane. 
The first of these factors may result from two different sources: the CCD plane not 
being parallel to the lens plane; and the mirror axis of rotation being not normal to the 
CCD plane. Since both effects result in geometrical transformations of the setup, we 
will integrate these two contributions in the CCD plane, therefore providing a simpler 
solution. The second of the misalignment factors, on the other hand, can also be 
integrated as a rotation angle around the Y axis. To generalize the solution for these 
two correction factors, we will assume a CCD center point translation offset given by 
(-dx, 0, -dy), and three rotation angles applied to the sensor: γγγγ, ρρρρ and θθθθ, around the Y’, 
X’  and Z’  axis respectively. These four geometrical transformations upon the original 
Pp pixel point can be obtained from the composition of the four homogeneous 
transformation matrices,  
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The new start point Pp’(p’cx, p’cy, p’cz), already translated to the original coordinate 
system, can therefore be obtained from the following three equations: 
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Analysis of the remaining problem can now follow from (5) substituting Pp’ for Pp. 
Finally we can also deal with the third misalignment pretty much in the same way. 
We just have to temporary shift the coordinate system origin, assume the original 
floor plane equation defined by its normal vector j, and perform a similar geometrical 
transformation to this vector. This time, however, only rotation angles ρρρρ and θθθθ need to 
be applied. The new unit vector g, will result as  
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The rotated ground plane can therefore be expressed in Cartesian form as 

 
 

)( hmfmtfgZgYgXg cyczcycx −=++  (19) 

Replacing the rt line equation (14) for the X, Y and Z variables into (19), the 
intersection point can be found as a function of u. Note that we still have to check if 
rt is parallel to the ground plane – which can be done by means of the rt and g dot 
product. This cartesian product can also be used to check if the angle between rt and 
g is obtuse, in which case the reflected ray will be above the horizon line. 

3.3 Obtaining the model parameters 

Some of the parameters needed to obtain the distance map can be measured from the 
setup itself, e.g., the ground plane rotation relative to the mirror base. A half degree 
and 0.5mm precision has been proven enough for practical results. Other parameters 
can be extracted from algorithmic analysis of the image or from a mixed approach. 
Consider, for instance, thin lens law 
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G/B is readily available from the diameter of the mirror outer rim in the sensor image; 
g can be easily obtained from the practical setup while f and the actual pixel size are 
defined by the sensor and lens manufacturers. Since the magnification factor is also 
the ratio of distances between the lens focus and both the focus plane and the sensor 
plane, the g value can also be easily obtained. The main image features used in this 
automatic extraction are the mirror outer rim diameter and eccentricity, the center of 
the mirror image, the center of the robot image, and both the radius, distance and 
eccentricity of the game field lines – mainly the mid-field circle, lateral and area lines. 



4 Support visual tools and results 

Although misalignment parameters can actually be obtained from a set of features in 
the acquired image, the resulting map can still present minor distortions. This is due 
to the fact that spatial resolution on the mirror image greatly degrades with distance. 
Since parameter extraction depends on feature recognition on the image, degradation 
of resolution actually places a bound on feature extraction fidelity. To allow further 
trimming of these parameters, two simple image feedback tools have been developed. 

 

 
Fig. 4. Acquired image after reverse-mapping into the distance map. On the left, the map was 
obtained with all misalignment parameters set to zero. On the right, after automatic correction. 

The first one creates a reverse mapping of the acquired image into the real world 
distance map. A fill-in algorithm is used to integrate image data in areas outside pixel 
mapping on the ground plane. (fig. 4). 
The second generates a visual grid with 0.5m distances between both lines and 
columns, which is superimposed on the original image. This provides an immediate 
visual clue for the need of possible further distance correction (fig. 5). Since the mid-
field circle used in this setup has exactly an outer diameter of 1m, incorrect distance 
map generation will be emphasized by grid and circle misalignment. 

 

 
Fig. 5. A 0.5m grid, superimposed on the original image. On the left, with all correction 
parameters set to zero. On the right, the same grid after geometrical parameter extraction. 

Comparison between real distance values measured at more than 20 different field 



locations and the values taken from the generated map, have shown errors always 
bellow twice the image spatial resolution. These results are perfectly within the 
required bounds for the robot major tasks, namely object localization and self-
localization on the field.  

5 Conclusions 

Use of low cost cameras in a general-purpose omni-directional catadioptric vision 
system, without the aid of any precision adjustment mechanism, will normally 
preclude the use of a SVP approach. To overcome this limitation, this article explores 
a “birds eye view” algorithm to obtain the ground plane distance map in the 
CAMBADA football robotic team. Taking into account the intrinsic combined spatial 
resolution of mirror and image sensor, the method provides viable and useful results 
that can actually be used in practical robotic applications. This method is supported 
by a set of image analysis algorithms that can effectively extract the parameters 
needed to obtain a distance map with an error within the resolution bounds. Further 
trimming of these parameters can be manually and interactively performed, in case of 
need, with the support of a set of visual feedback tools that provide the user with an 
intuitive solution for analysis of the obtained results. 

References 

1. Zivkovic, Z., Booij, O.: How did we built our hyperbolic mirror omni-directional camera - 
practical issues and basic geometry. Intelligent Systems Laboratory Amsterdam, University 
of Amsterdam (2006), IAS technical report IAS-UVA-05-04 

2. Juergen Wolf. Omnidirectional vision system for mobile robot localization in the Robocup 
environment. Master's thesis (2003), Graz, University of Technology. 

3.  E. Menegatti F. Nori E. Pagello C. Pellizzari D. Spagnoli.: Designing an omnidirectional 
vision system for a goalkeeper robot. In A. Birk S. Coradeschi and P. Lima, editors, 
RoboCup-2001: Robot Soccer World Cup V, LNAI, 2377, pp 78–87. Springer, 2001. 

4.  Menegatti, E. Pretto, A. Pagello, E.: Testing omnidirectional vision-based Monte Carlo 
localization under occlusion. Intelligent Robots and Systems, (IROS 2004). Proceedings. 
2004 IEEE/RSJ., 2487- 2493 vol.3. 

5.  Lima, P., Bonarini1,A., Machado,C., Marchese1,F., Marques,C., Ribeiro,F., Sorrenti1,D.: 
Omni-directional catadioptric vision for soccer robots. Robotics and Autonomous Systems, 
Volume 36, Issues 2-3 , 31 (2001), 87-102. 

6.  Baker,S., Nayar, S. K.: A theory of single-viewpoint catadioptric image formation, 
International Journal of Computer Vision 35 (1999), no. 2, 175–196. 

7.  Benosman,R.,  Kang., S.B.: Panoramic Vision. Springer, 2001. 
8.  Blinn,J.F.:A Homogeneous Formulation for Lines in 3D Space. SIGGRAPH 77, 237-241 
9. Foley, J.D., van Dam, A., Feiner,S.K., Hughes,J.F.: Computer Graphics: Principles and 

Practice in C,  Addison-Wesley Professional; 2 edition (1995) . 
10. Z. Zhang.: A flexible new technique for camera calibration. IEEE Transactions on Pattern 

Analysis and Machine Intelligence. (2000) 22(11):1330-1334.  
11. R. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. (2003). 

Cambridge University Press. 


