
Hierarchical Distributed Architectures  
for Autonomous Mobile Robots: a Case Study 

José Luís Azevedo, Bernardo Cunha, Luís Almeida 
Universidade de Aveiro, LSE-IEETA / DETI, 3810-193 Aveiro, Portugal 

 
{jla, mbc, lda}@det.ua.pt 

 
Abstract 

Robots are becoming commonplace in unstructured 
and dynamic environments, ranging from homes to 
offices, public sites, catastrophe sites, military 
scenarios. Achieving adequate performance in such 
circumstances requires complex control architectures, 
mixing adequately deliberative and reactive 
capabilities. This mixing needs to be properly 
addressed from both the software and hardware 
architectures point of view and, particularly, the 
mapping of the former onto the latter, in order to 
reduce mutual interference between concurrent 
behaviors and support the desired coordination with 
adequate level of reactivity. This paper discusses the 
benefits of using hierarchical distributed hardware 
architectures and presents the case study of the 
CAMBADA soccer robots developed at the University 
of Aveiro, Portugal. These robots use a distributed 
hardware architecture with a central computer to 
carry out vision sensing, global coordination and 
deliberative functions and a low-level distributed 
sensing and actuation system based on a set of simple 
microcontroller nodes interconnected with a 
Controller Area Network (CAN). 

1. Introduction 

Autonomous mobile robots are becoming 
commonplace in unstructured and dynamic 
environments, such as homes, offices, public facilities 
and military scenarios. For example, autonomous 
vacuum cleaners, floor washers, grass mowers, 
interactive toys, as well as surveillance, demining and 
rescue robots are going through a steep growth and are 
expected to grow even further in following years [3]. 
Acting in such environments requires complex 
behaviors that must be merged, coordinated and 
enforced. Therefore, adequate computational 
architectures must be used to support the effective 
behaviors execution, controlling various robotic 
components and subsystems. This architecture needs to 
address both the component level, which manages the 
basic robot subsystems and their individual actions, as 

well as the high-level coordination and control, which 
allows achieving the desired overall system behavior. 

A natural way to organize the architecture model 
referred above is to use a hierarchical approach with 
the two levels clearly separated, possibly further 
refined in more sublevels, and using their own 
computing resources. This has the advantage of 
decoupling the levels, separate their concerns, which 
have substantially different requirements, and 
minimize mutual interference. The high-level 
coordination and control system is, in general, 
computationally intensive thus, a centralized approach 
based on a single PC is commonly found. This 
approach also has the advantage of providing standard 
interfaces to specific high bandwidth I/O devices, such 
as cameras and wireless communication. On the other 
hand, a distributed approach to implement the 
component level of a mobile robot has several 
advantages [1]: a) it enables a scalable design because 
it is easier to add functionality to the robot; b) it is 
more flexible since a distributed system can be easily 
reconfigured; c) implementation of complex tasks can 
be facilitated through division into simpler ones; d) 
basic reactive control actions involving fast local 
feedback loops are easier to implement. 

This paper discusses the advantages of using 
hierarchical distributed hardware architectures in 
building mobile autonomous robots and presents a case 
study referring to the CAMBADA team of soccer 
robots (Cooperative Autonomous Mobile Robots with 
Advanced Distributed Architecture) for the Robocup 
Middle Size League. The CAMBADA project aims at 
researching in several areas typical to autonomous 
systems, from basic robot hardware to multi-agent 
systems. The robots have been developed from scratch 
and, unlike other approaches, using home-made 
mechanical parts and basic electronic modules. This 
paper focuses on the definition of the functional 
architecture, on the distributed hardware architecture 
and its modules, and on the mapping of the former onto 
the latter. The remainder of the paper is organized as 
follows: Section 2 discusses the use of hierarchical 
distributed architectures in autonomous mobile robots. 
Section 3 presents the general functional architecture 

1-4244-0826-1/07/$20.00 © 2007 IEEE 973

 



of the CAMBADA robots and the main hardware 
components. Section 4 discusses the mapping of the 
former onto the latter and describes the hardware 
architecture in detail. Section 5 presents the main 
information flows and their synchronization. Section 6 
presents some results and Section 7 concludes the 
paper. 

2. Why using hierarchical distributed 
architectures in robots 

After a period of evolution in autonomous robots 
programming, which went all the way from 
deliberative architectures to reactive and hybrid 
deliberative-reactive ones, the architecture that 
became, probably, the most common for controlling 
complex autonomous robots is the so-called behavior-
based [2]. According to this architecture, the robot 
control is essentially distributed over several 
concurrent behaviors, possibly organized in a 
hierarchical fashion, mixing reactive behaviors with 
cognitive and deliberative ones. The execution 
requirements of these behaviors, however, are 
substantially different. While reactive behaviors are 
normally simple and must be executed at relatively fast 
rates, deliberative ones are more computationally 
demanding and naturally require slower rates. 

It is curious to note that the discussions concerning 
the control architecture of autonomous robots generally 
focuses on the functional architecture and its mapping 
onto an adequate software architecture. Not so much 
has been said about the hardware architecture. This is 
understandable when talking of uniprocessor-based 
robots, in which the referred architecture mapping, e.g., 
using tasks in a suitable multi-tasking kernel possibly 
with real-time features, determines much of the robot 
reactive capabilities. However, the use of a uni-
processor system establishes a common system 
resource that is shared among all behaviors, i.e., the 
CPU itself, raising the possibility for mutual 
interference with potential negative effects in terms of 
timeliness, e.g., with longer and slower behaviors 
blocking faster reactive ones. Such a blocking could 
endanger both the robot and the environment by 
reducing its reactive capabilities. 

Avoiding these problems is easier, nowadays, with 
the help of both powerful real-time multitasking 
kernels and appropriate scheduling techniques [17] as 
well as with the high availability of inexpensive and 
relatively powerful microcontrollers with embedded 
communications capabilities [1]. The latter fact 
enabled the use of distributed hardware architectures, 
which became the preferred architectural paradigm for 
complex embedded systems during the last decade, 
with some applications to the control of autonomous 
mobile robots [4], [6], [7], [8], [11]. 

The advantages of distributed architectures extend 
from improved composability, allowing a system to be 
built by putting together different subsystems, to higher 
scalability, allowing to add functionality to the system 
by adding more nodes, more flexibility, allowing to 
reconfigure the system easily, better maintainability, 
due to the architecture modularity and easiness of node 
replacement, and higher reduction of mutual 
interference, thus offering a strong potential to support 
reactive behaviors more efficiently. Moreover, 
distributed architectures may also provide benefits in 
terms of dependability by creating error-containment 
regions at the nodes and opening the way for 
inexpensive spatial replication and fault tolerance. 

Several distributed hardware architectures within 
autonomous robots are reported in the literature. The 
work in [7] presents a robot for orange picking that is 
divided in four platforms, each one with two picking 
arms and all four of them interconnected with an SP50 
(later Foundation Fieldbus FF-H1) fieldbus. In [8] an 
industrial robot is presented, which is  based on a 
PROFIBUS network. 

One particular protocol that has been substantially 
used within mobile robots is CAN [9] due to its low 
price, simple usability, good reliability and timeliness 
properties. Examples of using this protocol can be 
found in [6], [10], [11]. The latter reference is 
particularly relevant to this work since it addresses the 
concerns of supporting a distributed sensing and 
actuation system integrated in a hierarchical 
architecture that also has a deliberative level. In [12] 
the same authors discuss the impact of real-time data 
transfers jitter on closed-loop control performance and 
propose a mixed CAN-based event/time-triggered 
protocol. 

Within RoboCup MSL, distributed hardware 
architectures based on buses are not typical. In most 
cases, there is a single main computer that controls all 
functions of the robot directly. However, there are 
examples of specialized hardware support to off-load 
the main CPU of certain low-level demanding 
functions, such as closed-loop motor and ultra-sound 
sensing. This is the case of [18], in which  a DSP 
module connected to the main CPU via a serial port is 
used to carry out low-level control functions. Some 
other cases, such as reported in [19], go a bit further in 
using a distributed architecture with several 
microcontrollers but all connected to the main CPU 
through USB channels, thus without the capability of 
direct cross communication and with relatively low 
reliability. Conversely, using the architectural 
paradigm proposed in this paper, based on an adequate 
bus technology, such as CAN, it is possible to achieve 
a substantially higher reliability and flexibility in the 
functions distribution and integration. 

974

 



3. General architecture 

The general architecture of the CAMBADA robots 
has been described in [4], [5]. Basically, the robots 
follow a biomorphic paradigm [13], each being 
centered on a main processing unit, the brain, which is 
responsible for the higher-level behavior coordination, 
i.e. the coordination layer. This main processing unit 
handles external communication with the other robots 
and has high bandwidth sensors, typically vision, 
directly attached to it. Finally, this unit receives low 
bandwidth sensing information and sends actuating 
commands to control the robot attitude by means of a 
distributed low-level sensing/actuating system, the 
nervous system (Figure 1). 
 

Main
Processor

High bandwidth
sensors

Distributed sensing/
actuation system

External communication
(IEEE 802.11b)

Coordination
layer

Low-level
control layer

 

Figure 1. The biomorphic architecture of 
the CAMBADA robots. 

At the heart of the coordination layer is the Real-
Time Database (RTDB) containing both the robot local 
state information as well as local images of a subset of 
the other robots states. A set of processes update the 
local state information with the data coming from the 
vision sensors as well as from the low-level control 
layer. The remote state information is updated by a 
process that handles the communication with the other 
robots via an IEEE 802.11b wireless connection. The 
RTDB is then used by another set of processes that 
define the specific robot behavior for each instant, 
generating commands that are passed down to the low-
level control layer (Figure 2). 

The low-level sensing/actuation system executes 
four main functions as described in Figure 2, namely 
Motion, Odometry, Kick and System monitoring. The 
former provides holonomic motion using 3 DC motors. 
The Odometry function combines the encoder readings 
from the 3 motors and provides a coherent robot 
displacement information that is then sent to the 
coordination layer. The Kick function includes the 
control of an electromagnetic kicker and of a ball 
handler to dribble the ball. Finally, the system monitor 
function monitors the robot batteries as well as the 
state of all nodes in the low-level layer. 

Finally, the low-level control layer connects to the 
coordination layer through a gateway, which filters 
interactions within both layers, passing through the 
information that is relevant across the layers, only. 
Such filtering reduces the overhead of handling 
unnecessary receptions at each layer as well as the 

network bandwidth usage at the low-level side, thus 
further reducing mutual interference across the layers. 

4. Mapping the functional architecture 
onto hardware 

The hardware architecture of the CAMBADA 
robots was designed to adapt naturally to the functional 
architecture described above. Firstly, two separate 
computing resources were employed for the two layers. 
Secondly, the low-level control layer was implemented 
with a set of simple microcontrollers organized in a set 
of subsystems. However, as it will be shown next, such 
subsystems are not completely isolated but they share 
computing resources, thus improving the efficiency of 
the global architecture and following recent trends in 
the embedded systems design community, from 
federated to integrated hardware architectures [20]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. The robots functional 
architecture built around the RTDB. 

Basically, the proposed approach follows the fine-
grain distributed model [1] where most of the 
elementary functions, e.g. basic reactive behaviors and 
closed-loop control of complex actuators, are 
encapsulated in small microcontroller-based nodes 
interconnected by means of a network. The issue, then, 
is to control the functional mapping onto the hardware 
architecture to take as much advantage as possible 
from its distribution. This is an important step since a 
poor mapping may lead to extra delays and delay 
variations. Previous work in this direction [21], [22] 
shows the use of optimization techniques to minimize 
certain parameters such as end-to-end delays, network 
transactions and load asymmetries among nodes or 
even to meet a set of global constraints such as real-
time and precedence. Instead, we follow a set of simple 
heuristics combined with an explicit synchronization 
mechanism (referred in the following section), which 
minimizes mutual interference, yielding good 
performance in terms of end-to-end delays and jitter, 
avoids the need for complex software infrastructures to 

Vision

Wireless 
Comunication

RTDB

Sensorial 
interpretation 
Intelligence 

and 
Coordination

Low-level 
communication 

handler

Motion Odometry

Kick System monitor

975

 



provide preemption support within the nodes and 
maximizes modularity, increasing system 
maintainability. Such criteria are the following: 

1. Closed-loop or sensing functions tied to specific 
I/O are allocated to the respective modules. 

2. Hierarchical functions without specific I/O are 
allocated to dedicated modules.  

In the remainder of this section we will review the 
hardware architecture of the CAMBADA robots, 
describing its organization, its modules, with focus on 
the specialized hardware, as well as the mapping of the 
system functions. 

4.1. The high-level coordination layer 
The natural implementation of the main processing 

unit is on one PC-based computer (currently a standard 
12" notebook based on an Intel Core2Duo processor) 
that delivers enough raw computing power and offers 
standard interfaces to connect to the lower layer 
(USB/serial ports), camera (Firewire) and other robots 
(WiFi). The PCs run the Linux operating system over 
the RTAI (Real-Time Applications Interface [14]) 
kernel, which provides time-related services, namely 
periodic activation of processes, time-stamping and 
temporal synchronization. The camera is part of a 
hyperbolic mirror-based vision system providing 360 
degrees panoramic vision. The communication among 
team robots uses an adaptive TDMA transmission 
control protocol [15] on top of IEEE 802.11b that 
reduces the probability of transmission collisions 
between team mates thus reducing the communication 
latency. 

4.2. The low-level control layer 
The low-level layer has a set of nodes built around a 

common module described in the following section and 
using specialized interfacing to the robot I/O devices. 
These nodes are interconnected with a CAN network 
operating at a bit rate of 250Kbps. CAN is rather 
convenient since it has a deterministic medium access 
control, a good bandwidth efficiency with small 
packets and a high resilience to external interference. A 
gateway interconnects the CAN network to the PC at 
the high-level layer either through a serial port or a 
USB port, operating at 115Kbaud in any case. 

4.3. The basic module 
Despite the possibility of using heterogeneous 

modules, the option was to develop all modules based 
on the same underlying hardware, which is a more 
economic solution and facilitates development and 
maintenance. The core of each module is a PIC18Fxx8 
Microchip [16] microcontroller (@40MHz, i.e., 10 
MIPS) which, along with a set of useful peripherals, 
such as timers, PWM generators, analog to digital 
converter and serial communications, also integrates a 

CAN controller. The basic structure of every module 
includes the CAN port to connect to the network and 
also includes a 115 Kbps RS232 serial port, which is 
useful both to program the module firmware and for 
debugging purposes (Figure 3). 

4.4. The motion controller 
The robot holonomic motion is obtained combining 

the speed of 3 DC motors (24V-150W), each with its 
own speed controller. Each of these controllers is a 
distinct module (Figure 3) of the whole distributed 
architecture implementing a PI closed loop speed 
control. It takes as inputs the motor shaft displacement, 
obtained through a quadrature incremental optical shaft 
encoder coupled to the motor, and the speed set-point. 
The computation of the three set-points needed to 
obtain a coherent robot motion is carried out by a 
function allocated to a new module called holonomic. 
It receives the robot velocity vector (speed, direction 
and heading) from the gateway and translates it into 
individual set-points for each motor controller. The 
interaction with the gateway and motor controllers is 
carried out through the CAN network. 

The specialized hardware of these modules has two 
main blocks: the logic block that interfaces to the basic 
module and generates the required control signals, and 
the power block which is essentially an NMOS H-
Bridge, with two high-side drivers, to actually drive the 
motor. The output of the logic block is a set of four 20 
KHz PWM signals implementing a modified lock anti-
phase drive. In this drive mode the motor is energized 
only during the on-time, in contrast with the standard 
lock anti-phase where the motor is energized in reverse 
direction during the off-time. That is, when the motor 
is stopped (duty-cycle of the PWM signals is 50%) the 
current is zero. This implementation leads to a 
significant gain in autonomy, whenever the motor is 
not rotating at its maximum speed, which is an 
important issue in mobile robotics. 

One important characteristic of these motor 
controllers is the galvanic decoupling between the 
logic block and the power block carried out through 
opto-couplers. Along with improved reliability of the 

 

Figure 3. Basic module (left) and Motor 
controller (right). 

976

 



system it prevents serious damages in expensive 
equipment (such as the notebook in the high-level 
layer) whenever any electric problem occurs. The 
drawback of this solution is the need of an extra battery 
for the logic part of the system. 

4.5. Odometry 
The odometry function of the robot is accomplished 

through the combination of 4 basic functions: the 
reading of the 3 encoders plus their combination to 
generate a coherent displacement information (∆x, ∆y, 
∆θ). The reading of each encoder is naturally allocated 
to each motor module, using the same readings as those 
used by the speed feedback control. The combination 
of the readings is carried out in a specific module, the 
odometry manager, which receives the encoder 
readings from the motors and sends the results to the 
gateway via CAN messages. 

4.6. The kicking system 
The kicker is an essential part of a soccer robot and, 

to be useful, it must allow the control of the kicking 
power. There are mainly three types of kickers 
currently in use in RoboCup: spring-based, pneumatic 
and electromagnetic. The spring-based kickers store 
energy in a spring, through mechanical means. The 
spring is released whenever the robot has to kick the 
ball. Although conceptually simple it is hard to 
implement and hard to modulate the kicking, since it 
has to be done through mechanical means.  

The pneumatic kicker is a popular approach used by 
many teams. The robot carries an air recipient that has 
to be filled to a pre-defined pressure before a match. 
The actuator is mainly composed of a pneumatic 
cylinder that is controlled by means of a valve 
regulating the airflow from the recipient (thus allowing 
the shooting power to be controlled). As the shooting 
power depends on the pressure of the air recipient high 
pressure is needed; furthermore, as the number of kicks 
depends on the air storage capacity, a large recipient is 
needed.  

The third approach, which is the one adopted by the 
CAMBADA team, is the so-called electromagnetic 
kicker whose main element is an electromechanical 
solenoid. The solenoid consists of a coil, wound around 
a movable iron core producing a magnetic field when 
an electric current passes through it. The magnetic field 
causes the iron core to move towards the ball, thus 
kicking it. Controlling the magnetic field provides 
control over the kicking power, and that represents a 
very convenient way to modulate the kicking action. 
The energy needed to drive the solenoid is stored in a 
capacitor. To get a strong kick a large magnetic field 
has to be created which implies the usage of reasonably 
high currents and/or voltages and also of large 
capacitors.  

The kicking system is based on a basic module 
extended with specific I/O hardware with a logic and a 
power block with galvanic decoupling similarly to the 
motor controller. The two main components of the 
power block are: 1) a DC to DC converter circuit that 
stores energy in the capacitor; b) a solid-state switch 
that controls the discharge of the capacitor on the 
solenoid thus triggering the kicker.  

The DC to DC converter is a typical switch-mode 
converter based on a boost configuration that converts 
24V DC to 100V DC. In general terms, it works in two 
steps: 1) a DC voltage is set across an inductor during a 
pre-defined period of time which causes the inductor to 
store energy magnetically; 2) the voltage is switched 
off which causes the stored energy to be transferred to 
the capacitor. Although very simple, this circuit is very 
efficient resulting in a rather low capacitor recharge 
time. The implemented circuit works at 18KHz and, in 
practical terms, the recharge (from 24V to 100V) of a 
80000µF capacitor takes roughly 6s. The capacitor 
charging process is carried out in a closed-loop way, 
being the voltage across the capacitor continuously 
monitored by the microcontroller. The output of the 
microcontroller is a 18 KHz / 35% PWM signal which 
has been found experimentally as optimal in order to 
minimize the charging time. This is crucial since an 
inefficient charging process can dramatically decrease 
the running time of the battery. 

The second component referred above is a solid-
state switch based on NMOS transistors, whose 
specifications (100V / 150A in our design) depend 
essentially on the capacitor voltage and current drawn 
by the solenoid. 

The kicking system also includes two IR sensors 
used to implement a local behavior to optimize 
kicking: an IR barrier which is used to detect the ball 
when it is in the kicking position, thus avoiding false 
triggering; and a short distance IR sensor (less than 50 
cm) which can be used, in addition to visual 
information, to determine more precisely the distance 
between the front of the robot and the ball.  

Another feature implemented in this module is an 
active ball-handler system whose purpose is to dribble 
the ball throughout the game field in accordance with 
the RoboCup MSL rules. It has two blocks: 1) a DC 
motor to pull the ball towards the robot; 2) a rotation 
sensor, implemented as a quadrature incremental 
encoder, to measure the ball movement. This setup 
provides ball rotation feedback control, which allows 
setting a wide range of different ball speeds, 
independent of the robot motion. 

The functions related to the kicking system are 
executed within the kicker module, without need for 
additional modules. The kicker interacts directly with 
the high-level layer through the gateway via CAN 
messages. 

977

 



4.7. The system monitor 
This function has two purposes, monitoring both 

battery voltage and modules run-time status. This latter 
purpose requires this function to be present in all 
modules, tracking reset situations, namely power-up 
reset, warm reset, brown-out reset (caused by 
undervoltage spikes) and watchdog reset, as well as 
answering to I’m alive requests issued by the high-level 
layer. However, tracking resets does not interfere with 
the remaining code being executed in each node since 
it is done before the actual functions are started, neither 
does handling I’m alive messages, which is 
neglectable. 

On the other hand, battery monitoring is 

implemented in the same module as the kicker, since it 
already includes the specific voltage monitoring I/O. 
This function measures in real-time the voltage of the 
three NiMH batteries used in the robot, namely 2x12V 
for the power blocks of motor controllers and kicker, 
plus a 9.6V for the logic blocks. Particular care has 
been taken with the monitoring of the two power 
batteries, which is carried out using isolation amplifiers 
to maintain the galvanic isolation between logic and 
power blocks. 

The information gathered by the system monitoring 
function, in all nodes, is sent to the high-level layer for 
remote monitoring and global coordination purposes. 

5. Main information flows and their 
synchronization 

Beyond the task allocation to nodes, the way tasks 
are synchronized also has a substantial impact on the 
overall performance, namely in the end-to-end delays 
and jitter. There are two main paradigms concerning 
synchronization, either based on events, e.g., messages 
arriving from the CAN, interrupts from the hardware, 
other tasks terminating, etc., or based on time, e.g. at 
predefined instants. 

The former method, normally referred to as event-
triggered, is associated to a flexible execution of tasks 

whose start instant is not known in advance. Also, 
tasks with precedence constraints are normally 
triggered directly by their predecessors in a chain. This 
method tends to generate low end-to-end delays since 
all tasks related with one event are executed one after 
the other. However, the execution in sequence also 
causes inheritance and amplification of the tasks 
execution jitter, which is normally undesired for 
control purposes. Also, in multi-rate scenarios like the 
one in these robots, e.g. the motor controllers cycle at 
5ms and the holonomic function cycles at 30ms, it is 
not possible to establish simple event chains, being 
necessary to use unsynchronized cycles that tend to 
cause rather large end-to-end delays and jitter. 

The alternative is a time-triggered approach in 
which the periodic activities in the system are all 
synchronized and triggered with adequate relative 
offsets to absorb jitter of intermediate tasks in a 
transaction and reduce end-to-end delays. The 
CAMBADA robots use this approach, based on the 
FTT-CAN protocol (Flexible Time-Triggered 
communication over CAN) [23]. This protocol keeps 
all the information of periodic flows within a master 
node, implemented on another basic module, which 
works like a maestro triggering tasks and message 
transmissions [24].  

The flows of information associated to the motion 
and odometry functions are shown in Figure 5, which 
also shows the synchronization framework and the 
relative offsets that were used to achieve low end-to-
end latencies. Further details on the effective 
synchronization and on the explanation of Fig. 5 can be 
found in [5] but with larger execution times 
corresponding to a previous version. 

The up arrows on the CAN bus represent the 
transmission of the trigger messages sent periodically 
by the FTT-CAN master, which control the execution 
of tasks in the nodes and the transmission of periodic 
(synchronous) messages on the bus. These control 
dependencies are illustrated with curved lines. The 
figure also illustrates the end-to-end latency (dee) for 

 

Fig. 4. Hardware architecture with functional mapping. 

978

 



each flow within the low-level layer, i.e. from the 
reception of a velocity vector set-point at the gateway 
until the respective motor setpoints are applied to the 
motor controllers (17ms), and from the reading of the 
encoders until the robot odometry information reaches 
the gateway (21ms).  

6. Experimental results 

In order to provide some quantitative evaluation of the 
architecture, we measured the activation jitter and the 
execution time jitter of the main functions, namely 
odometry, holonomic and the motor controllers (Table 
1). These values are substantially shorter than one 
would obtain if such functions were executed in a PC, 
with all the interference caused by high-level 
coordination processes and operating system 
mechanisms. These results also show the decoupling of 
the activation jitter with respect to the execution jitter 
of the several functions, a direct consequence of the 
modularity of the architecture and the synchronization 
framework used. 

 
 Period Activation 

jitter 
Execution 

time 
Execution 

jitter 
Holonomic 30ms ±15µs 9.6ms ±50µs 
Odometry 10ms ±15µs 2.1ms ±100µs 
Motor 
controller 

5ms ±15µs 165µs ±25µs 

Table 1. Activation jitter and execution 
time jitter of main functions. 

7. Conclusion 

For many years the software architectures of 
autonomous robots were discussed, with behavior-
based becoming the most common ones, and relatively 
less attention was devoted to hardware architectures. 
However, when distributed hardware architectures 
became attractive in terms of cost, they became a 
possibility for use within robots, too, but a further step 
became necessary, i.e., allocating tasks to processors. 
On one hand, using distributed architectures may bring 
benefits in terms of composability, scalability, 
flexibility, maintainability and decoupling of 
concurrent functions and behaviors, on the other hand, 
a poor task to processor mapping may impact 
negatively on the reactive capabilities of the robot and 
thus must be carried out carefully. 

This paper discussed the interest of using 
hierarchical distributed hardware architectures and 
presented the case of the CAMBADA middle-size 
robotic soccer team, being developed at the University 
of Aveiro, Portugal. These robots use a two-tiers 
architecture with a PC on top to execute the vision 
sensing and robot coordination, and a distributed 
system on the bottom, based on CAN, interconnecting 
the motors, encoders, kicker, dribbler and battery 
monitoring system. The paper described these 
subsystems as well as the allocation of their tasks to the 
processors. Some results were presented, namely 
concerning activation and execution jitter of the 

 

   Holonomic Ctrl 

Odometry 

CAN BUS 

dee 

dee

CAN BUS 
Gateway 

Motor  1 
Motor  2 
Motor  3 

Motor  1 
Motor  2 
Motor  3 

 

Figure 5. The information flows of the motion (top) and odometry (bottom) system functions. 
Notice that both flows are merged in the actual robot implementation. 

979

 



various tasks, which illustrate the effectiveness of the 
architecture used. 

8. Acknowledgement 

This work was partially supported by IEETA, 
Aveiro, Portugal and by the European Commission 
through the ARTIST2 NoE (IST-2-004527). 

References 

[1] Kopetz, H., "Real-Time Systems Design Principles for 
Distributed Embedded Applications", Kluwer, 1997.  

[2] Mataric, M. J., "Behavior-Based Robotics", in the MIT 
Encyclopedia of Cognitive Sciences, Robert A. Wilson 
and Frank C. Keil, eds., MIT Press, pp. 74-77, April 
1999. 

[3] Gates, B., “A Robot in Every Home”, Scientific 
American, January 2007. 

[4] L. Almeida, F. Santos, T. Facchinetti, P. Pedreiras, V. 
Silva, L.S.Lopes, "Coordinating distributed autonomous 
agents with a real-time database: The CAMBADA 
project". ISCIS'04, 19th International Symposium on 
Computer and Information Sciences. 27-29 October 
2004, Kemer - Antalya, Turkey. 

[5] V. Silva, R. Marau, L. Almeida, J. Ferreira, M. Calha, P. 
Pedreiras, J. Fonseca, "Implementing a distributed 
sensing and actuation system: The CAMBADA robots 
case study", IEEE ETFA 2005, Catania, Italy. 
September 2005. 

[6] Mock, M., Nett, E., "Real-Time Communication in 
Autonomous Robot Systems", Proc. 4th Int. Symp. on 
Autonomous Decentralized Systems, 1999, Integration 
of Heterogeneous Systems, 21-23 March 1999, pp. 34-
41 

[7] Cavalieri, S., Stefano, A., Mirabella, O., "Impact of 
Fieldbus on Communication in Robotic Systems", IEEE 
Transactions on Robotics and Automation, Vol. 13, N. 
1, February 1997. 

[8] Valera, A., Salt, J., Casanova, V., Ferrus, S., "Control of 
Industrial Robot With a Fieldbus", Proc. 7th IEEE Int. 
Conf. on Emerging Technologies and Factory 
Automation. ETFA '99. Vol. 2, 18-21 October 1999. 

[9] Controller Area Network - CAN2.0, Technical 
Specification, Robert Bosch, 1992. 

[10] Kongezos, V., Allen, C.R., "Wireless Communication 
between A.G.V.’s (Autonomous Guided Vehicle) and 
the insdustrial network C.A.N. (Controller Area 
Network)", Proc. 2002 IEEE Int. Conf. on Robotics & 
Automation Washington, DC, May 2002. 

[11] J. L. Posadas Yagüe, P. Pérez, J. Simó, G. Benet and F. 
Blanes, "Communications structure for sensory data in 
mobile robots", Engineering Applications of Artificial 
Intelligence 15, pp341-350, 2002. 

[12] P.Pérez, G.Benet, F. Blanes, J.E. Simó, 
"Communication Jitter Influence on Control Loops 
Using Protocols for Distributed Real-Time Systems on 
CAN bus", Proc. of IFAC SICICA 2003, Aveiro, 
Portugal, July 2003. 

[13] Proc. of the NASA Workshop on Biomorphic Robotics, 
Jet Propulsion Laboratory, California Institute of 
Technology, USA, 2000. 

[14] RTAI for Linux, available at 
http://www.aero.polimi.it/~rtai/ 

[15] F. Santos, L. Almeida, P. Pedreiras, L.S.Lopes, T. 
Facchinnetti, "An Adaptive TDMA Protocol for Soft 
Real-Time Wireless Communication Among Mobile 
Computing Agents". WACERTS 2004, Workshop on 
Architectures for Cooperative Embedded Real-Time 
Systems (satellite of RTSS 2004). Lisboa, Portugal, 5-8 
Dec. 2004. 

[16] Microchip website, available at www.microchip.com 
[17] Giorgio Buttazzo, "Hard Real-Time Computing 

Systems: Predictable Scheduling Algorithms And 
Applications", Second Edition, Springer, 2005. 

[18] Weidong Chen, Qixin Cao, Jingchuan Wang. 
JiaoLong2007 Team Description. Available on-line at 
http://robocup.sjtu.edu.cn/robocup/index.htm 

[19] P. Lima, H. Costelha, J. Estilita, N. Martins, G. Neto, J. 
Santos. ISocRob 2006 - Team Description Paper. 
Available on-line at 
http://socrob.isr.ist.utl.pt/omnis2006.php 

[20] J. Rushby, "A Comparison of Bus Architectures for 
Safety-Critical Embedded Systems", CSL Technical 
Report, September 2001. 

[21] D. T. Peng, K. G. Shin, T. Abdelzaher, "Assignment and 
Scheduling Communicating Periodic Tasks in 
Distributed Real-Time Systems", IEEE Trans. on 
Software Engineering 23 (12):745 - 758, December 
1997. 

[22] Alexander Metzner, Martin Fränzle, Christian Herde, 
Ingo Stierand, "Scheduling Distributed Real-Time 
Systems by Satisfiability Checking," rtcsa, pp. 409-415,  
11th IEEE International Conference on Embedded and 
Real-Time Computing Systems and Applications 
(RTCSA'05),  2005. 

[23] Almeida L., P. Pedreiras, J. A. Fonseca, "The FTT-CAN 
Protocol: Why and How, IEEE Transactions on 
Industrial Electronics", 49(6), December 2002. 

[24] Calha, M.J., J.A. Fonseca, “Approaches to the FTT-
based scheduling of tasks and messages”, Proceedings 
of the 5th IEEE International Workshop on Factory 
Communication Systems (WFCS’04), Vienna, Austria, 
Sep/2004. 

 

980

 


