
MULTI-AGENT DEBUGGING AND

MONITORING FRAMEWORK

João Figueiredo, Nuno Lau, Artur Pereira

IEETA/DETI, Universidade de Aveiro
joao.figueiredo@ieeta.pt, lau@det.ua.pt, artur@det.ua.pt

Abstract: In this paper we present a framework developed for the CAMBADA
Middle-sized league robotic team, which allows human developers to better
understand the robots actions during a game. Robotic soccer teams are in their
nature dynamic multi-process and multi-agent systems, and knowing what is
happening in all processes running on the agents at the same time is a hard
task. To accomplish this task we developed a framework to create log files, one
per process, and to interlace them later. The logs represent robot’s knowledge.
The framework allows the synchronization and visualization of logs and videos.
Videos give the actual real behaviors. This will allow us to understand the robot’s
reasoning. A GUI utility to navigate and search inside log files was also developed.

Keywords: monitoring, debug, multi-agent, multi-systems, robotics, MSL,
Middle-Sized League

1. INTRODUCTION

RoboCup (Kitano et al., 1997) is an international
joint project to promote AI, robotics, and related
fields. It is an attempt to foster AI and intelligent
robotics research by providing a standard problem
where wide range of technologies can be integrated
and examined. RoboCup chose to use soccer as a
central topic of research, aiming at innovations
developed for soccer playing robots to be applied
later for socially significant problems and indus-
tries.

CAMBADA (Almeida et al., 2004b) is the Middle-
Sized League soccer team from the University of
Aveiro, and is composed of three field players and
a goal-keeper. By itself the team is a dynamic
multi-agent system with all players sharing their
perception of the game field. Each robot is an
autonomous unit, capable of making decisions in
real-time based on its own sensorial data and from
data received from its team mates. The software
each robot runs is composed of several programs,

all running simultaneously, taking large amounts
of decisions in a very short period of time and per-
forming complex tasks, which makes it very diffi-
cult to understand its reasoning while it’s playing.
Following the robot’s reasoning based only on
external observation is also difficult because it all
happens very fast from the human point of view
and most of the robots internal state is hidden.
And we also need to consider that their decisions
are based not only on information received from
its own sensors but from the other team mates
as well. This difficulty turns the process of tun-
ing and debugging the decision mechanisms quite
hard. To solve this problem a framework which
uses the concept of layered disclosure (Stone et
al., 1999) and extends its functionalities was de-
veloped. It allows each process to log its data to a
separate file and later join them to analyze the
information saved as if it was on a continuous
time-line. This process can be performed for each
robot. A GUI program that allows navigating the
files, searching for specific events and synchronize



video from the robots and other external sources
was also developed.

This paper is organized as follows. This introduc-
tion is followed by section 2 with the main specifi-
cations that led to the development of the frame-
work. Sections 3 and 4 discuss log creation and
log navigation, respectively. Section 5 presents
the GUI application developed for navigating the
logs, synchronizing videos and searching for spe-
cific events. Section 6 introduces another tool for
automatically determining the robots position in
the field and help on the development of a self
localization technique. Section 7 presents some
results and finally on section 8 the conclusion of
this paper.

2. SPECIFICATION

CAMBADA soccer team is composed of four
players, three field players and a goal-keeper.
Each robot operates autonomously processing the
information obtained from the cameras, the base
micro-controllers and also from the other team
mates.

Fig. 1. CAMBADA Soccer Player

World information is shared between the robots
using the RtDB TDMA protocol (Almeida et al.,
2004a). The purpose of the RtDB (Santos et al.,
2004) is to serve as both local and shared area for
communication among processes within the same
robot and communication among different robots
and also to create a channel to communicate with
the micro-controllers using FTT-CAN (Silva et
al., 2005). The RtDB is implemented using RTAI,
a real-time layer for the Linux kernel.

Understanding what a particular robot is doing
and why it is doing that is not easy, since it is
a complex system, its world changes dynamically
and it takes a lot of decisions per second. To help
in this task we propose a debugging and moni-
toring system that simultaneously shows robot’s

knowledge and its real behavior. It is composed of
a back end and a front end. The former is a library
of functions and allows for the production of log
files including video data. The latter is library of
objects and a GUI application that allows the user
to interact with single and multi-file logs from
one or multiple agents. The tool allows for the
synchronized visualization of the robot’s reason-
ing through the contents of the log files, and of
its external behavior, by displaying synchronously
recorded video of the robot acting in the field.

2.1 Main Requirements

To create the framework to support the manipu-
lation of log files several key points were defined.

First of all it should support generic text with
information pertinent to the program. Second, it
should be possible to organize the information by
category, eg. vision, decision, etc and by level of
detail so that when reading the log files, the user
may have the ability to analyze specific parts of
it.

CAMBADA robots run several processes at the
same time so it’s easier to create the framework
so that it allows each program to write its own
log file. Some form of synchronization is required
to later be able to open them and read the
information synchronously. This allows for the
production of log files in different processes in the
same machine, or even in different machines, and
for overall analysis of the collected information.
When applied to a soccer team this allows for:

• analyze together log data from different pro-
cesses of a soccer player;

• analyze together log data from processes on
different players;

• compare log data from a soccer player with
data obtained with some monitoring system;

• analyze the robot’s reasoning;
• analyze the real data on which robot’s rea-

soning was generated.

Navigating log files and searching for specific in-
formation is another aspect to include in the speci-
fication. This means that some form of bookmark-
ing is required for fast searching.

Recording video images is also required to be
able to see what the robot sees at a given time
and understand its decisions with the textual
information.

Finally and probably the most important feature
of the back end is the easiness of use so that other
people will rapidly adapt to its interface and use
it in their software.



2.2 Log structure

Since we will be logging multiple forms of in-
formation (text, image, bookmarking), we need
to create different record types to record that
information in the log files and to help navigating
in them. So far we identified 4 types of records:

• Text to record formatted text messages;
• Video to save one image for example from the

vision or from an external camera;
• Bookmark to place a bookmark for a specific

category and later allow seeking on the infor-
mation;

• Registration to register a new category of the
tree to file;

The information contained in the logs may be
overwhelming. On the other hand it should be as
easy to visualize as possible. This has led to the
use of classified information: vertically by level of
detail; and horizontally by subject using a tree of
categories.

To organize information by level of detail we use
some points derived from the concept of Layered
Disclosure as proposed by (Stone et al., 1999),
where the relevant information is organized in
layers. Layers give us the depth of the information,
that is, layers with smaller numbers indicate high-
level reasoning of the robot and layers with higher
numbers add more and more detail to the lower
ones.

We extended the concept of layered disclosure
with the inclusion of a tree of categories. This
concept of tree was implemented on another li-
brary for logging system events (log4cpp (Bakker
et al., 2005)). The tree of categories is important
to better organize the information, not only by
its importance but by its type. Figure 2 shows
an example of a tree of categories where it is
possible to see the detailed structure of run (the
agent of the robot) and vision which controls the
front camera. The tree also gives the possibility to
stop/start sending information of a given category
to the log file in runtime or allow the person
reading the files to hide categories that are not
relevant for the analysis of the problem.

To be able to analyze multiple log files from one
robot or from multiple robots, a common time line
is required in all files. This can be done including
a time-stamp in each record. Time-stamps can
be obtained from the computer clock or from the
RtDB/RTAI (Santos et al., 2004). If we want to
log data on multiple robots playing at the same
time and later read it simultaneously, we need to
synchronize their clocks. Synchronization can be
done with NTP servers when using the computer
clock as the source of time-stamps or from the
RTAI layer in the Linux kernel.

Fig. 2. An example of a tree of categories with two
programs running

2.3 Visualization of logs

Reading the log files and understanding the se-
quence in which the programs are executed is
simple but it is highly time-consuming to do it
by hand. This led us to create a second library to
read log files simultaneously, interlacing them and
give the person using it the impression that only
one log file for each robot exists, the front end.
This is done on-the-fly with all the selected log
files and gives the user the exact order on which
the programs ran. A GUI application was also de-
veloped in conjunction with the front end to allow
navigation in the log and searching information by
specific text, bookmarks, time, etc.

The framework includes the set of both developed
libraries and the application to interactively ana-
lyze the log.

3. LOG PRODUCTION

CAMBADA robots run several processes in real-
time simultaneously which makes impossible to
use prints on the screen for debugging.

By using the monitoring framework’s back end,
every running program creates its own log file.
The default file type is “Formatted Text” where
every record is encoded in plain readable text, but
other formats can be developed as well.“XML” 1

or even a “binary” format are possible.

Every file is composed of records. There are four
types of records created so far: Registration, Text,
Video, Bookmark. The type of information each
record contains is described in section 2.2.

Every record is composed, of:

• a time-stamp;
• a type;
• a category;
• specific data.

1 Extensible Markup Language web site:
http://www.w3.org/XML/



Here’s an example of a registration and a text
records:

35203551142 REGC /run/ctrlloop/decision/defender/

35203839343 TEXT /run/ctrlloop/integration/ball/ 2

CORRIGIDA ws->ball is 1.86, 0.29

The first record has no specific data. It indi-
cates that the program has just registered cat-
egory /run/ctrlloop/decision/defender. The cat-
egory being registered is defender but its full
path along the tree of categories is written to the
log file. The specific data of the second record is
composed of a level of detail (2) and free text.
It shows that the ball was seen at position (1.86,
0.29) relative to the robot’s position and orienta-
tion.

To write these records to file and manage the tree
of categories, several functions are available to the
user and they are described in section 3.1.

3.1 System Architecture

When creating the back end library to write log
files, one of the key aspects was to keep it as simple
as possible to the user. So we decided the best is
to present it as a library of functions in C.

Here is a small set of the most important functions
available:

• logInitialize - given the file name ini-
tializes the tree of categories with the root
category

• logTerminate - terminates all the logging
facilities of the library, closes all files and
releases all memory allocated

• logText - saves a text record
• logBookmark - saves a bookmark
• logYuv - saves a video image

Using categories is optional. An user may use only
the root category which is created automatically
by the library.

Using long strings, like the ones shown in the
records example of section 3, to identify cat-
egories can be cumbersome and they are also
prone to typing errors. To overcome this, an han-
dle/descriptor number is created for each category
and returned to the user by the logRegisterNewModule
and logRegisterSubModule functions when new
categories are registered. The handle may be used
in subsequent calls to logging functions to identify
categories.

These are the most important functions to man-
age the tree of categories

• logRegisterNewModule - registers a new
category under the root of the tree and re-
turns an handle

• logRegisterSubModule - registers a new
category under any other existing category
and returns an handle

• logEnableOutput - given the handle, enables
logging of this category; it can also enable
logging of all the subtree below this category

• logDisableOutput - given the handle, dis-
ables logging of this category; it can also
disable logging of all the subtree below this
category

Categories can be created and enabled/disabled
on the fly when a program is running and can
depend on conditions or program options, avoid-
ing the need for recompiling. Figure 3 shows a
simplified view of its components.

Fig. 3. User interface block diagram

Liblog is the main block. It implements the ini-
tialization of the library and the logging functions
available to the user. Names implements the func-
tions to manage the tree of categories. Error is
a common block which makes available a set of
functions to analyze errors of the library. Error is
used by Liblog and by Names to manage errors
internally and can also be used be the user to
print or analyze them. All functions provided by
these blocks are developed using dynamic buffers
to prevent suspending the process execution and
maintain the impact on the performance to a
minimum. Also, all functions have a small number
of parameters and some of them are similar to
system functions, making them very easy to use.

The remaining blocks: crecord, cwriter and ccat-
egory are support classes for the objects used
internally by the library: different record types,
formatted text output and each category in the
tree, respectively. This means that the core of the
framework is built in C++ because it is simple to
write code that closely represents the conceptual
model of the project using an Object Oriented
programming language. The back end interface
is a wrapper to these objects in C so it will be
simple to use. To add new functionalities to the
framework like new types of records or new log
file formats it’s as easy as creating new derived
classes of these.



4. LOG NAVIGATION

4.1 Synchronization

To read data from different log files and retrieve
joined information a kind of synchronization is
required. This synchronization is based on time-
stamps included in each record, on every file.
Rebuilding the original sequence on which the
records were saved to the log files is possible just
by implementing an algorithm to seek the record
with the closest time-stamp to the current one.

Several classes that represent the front end of the
framework are implemented as seen in figure 4,
using C++ and the STL library to maintain
the portability between multiple platforms. They
implement gradually several forms of navigating
the information:

• CFile - Implements basic file I/O, open, read
and seek functionalities;

• CParser - Implements file interpretation,
creates records from a file and allows sequen-
tial navigation on them and has some caching
built-in;

• CTimeNavigator - Extends the CParser
functionalities by adding the ability to navi-
gate using time-stamps (seek to time-stamp)
besides the already existing sequential navi-
gation;

• CCursor - Uses all the functionalities of the
classes above and a look ahead technique
to allow sequential navigation and by time-
stamp on multiples files at the same time;

Fig. 4. User interface block diagram

4.2 Multiple log file navigation

CCursor is the top level class for this front end
library of the framework. Its name comes from
the analogy of a sliding cursor used to navigate
all the records on multiple files. It can manipulate
multiple log files at the same time and synchronize

them to the current time-stamp. Current time-
stamp can be interpreted as the current position
of the cursor.

CCursor makes available to the user, the time-
stamp limits for the set of files and the ability to
seek to a specific position and navigate from there,
forward or backwards.

The tree of categories can be created by the user
from the log files managed by CCursor by means
of CCategory objects and CCategoryIterator iter-
ators which implement depth-first search algoritm.

Based on CCursor, it was possible to develop
the GUI application (section 5) that receives the
records already “organized” so they can be filtered
and displayed according to their nature, either
text or video.

5. LOGREADERQT APPLICATION

To make practical use the log files in CAMBADA
to debug the robot’s software a GUI application
was developed using the Qt framework (Trolltech,
2005). An image of the main window is shown in
figure 5. So far this application has two modes of
displaying information, one textual and one with
video.

Fig. 5. Logreader main window

When LogreaderQt starts it creates a CCursor ob-
ject and an empty tree of categories. The CCursor
object will maintain and manage the set of log files
provided by the user and it will also allow navigat-
ing the records to extract information to display
and to create the tree of categories. Log files can
be added and removed from the set whenever it is
required.

Navigation in the set of files is entirely done
by CCursor object. Figure 5 shows the tree of
categories, inside each window, that is created
when CCursor opens files. It is possible to create
empty categories on the tree and to “mount” log
files in them, using the same analogy of a file



system. This allows to separate logs from different
agents and applications if required.

Filtering details and/or hiding data is possible
using context menus either for categories of data
or for level of detail of information. This way an
user can hide everything that is not important
and read only what matters most for a particular
analysis.

LogreaderQt gives the user several ways of search-
ing for what he’s looking for in the log. It is
possible to search information using:

• records - seek a number of records at a time
and showing them;

• time - seek some time forward or backwards
in the log. The time units for the files and
navigation are user selectable;

• bookmarks - seek inside the log to the
next or previous bookmark of the selected
category; this way it’s possible to jump from
one control cycle to the next for example;

• video - seek to the next or previous image of
the selected category;

• play - play mode to keep advancing the
records and video until the user instructs the
program to stop;

• regular expressions - in the future;

Finally video and text are synchronized, which
means when a text record is selected the video
jumps to the nearest previous image. This simpli-
fies the process of analyzing information by the
user as it allows the direct comparison of robots
internal state and reality as seen by the camera.

6. REAL POSITION MONITORING

One of the problems we faced while developing the
soccer team is the fact that the robot’s absolute
position on the field is not trustable. Moving along
the field while playing, when the robot’s absolute
position is updated only by odometry it tends
to accumulate errors after travelling a few dozen
meters.

Fig. 6. Top viewer detecting a robot top marker

Facing this problem we devised a solution to help
quantify the error of the current solution and test
new solutions as they are implemented. Like the
Robocup’s Small-Sized League, we incorporated a
video camera on the top of the game field. This

camera has its own software, figure 6, to identify
the field limits, the robotic agents in the field
and log their position (text and video) to a file,
using the framework. Comparing this log and the
robots’ logs should give us the ability to identify
current problems and evaluate new solutions.

7. RESULTS

To demonstrate a typical application of the frame-
work, log files were created on two robots that
exhibited a strange behavior while playing soccer.
The setup for the experience consisted on leaving
the robots side by side and placing the ball at a
distance were the problem was visible. It was clear
that if they seen the ball simultaneously and if
their distance to the ball was similar at that time,
robot number 3 was always the one to change to
striker.

After opening the log files with the application it
became clear were the problem was coming from.
Figure 7 shows one of the images recorded by the
robot’s log. Figure 8 shows an excerpt of textual
information from the log files. There we can see
that robot number 3 detects the ball at a distance
of 4 meters and robot 1 at 6 meters. Clearly robot
3 thinks it is the closest to the ball and changes its
behavior to striker. The source of the problem is in
the neural network that translates pixels from the
image to distances in the field not being properly
calibrated. After analyzing the rest of the log we
also discovered that the vision of robot 3 was not
returning any distances greater than 5 meters.

Fig. 7. Log image from the vision

Fig. 8. Excerpt from the textual information

Like this problem, that was quickly discovered,
many others can be easily spotted with the ability
to cross information from multiple processes and
multiple agents simultaneously if we use these
tools.



8. CONCLUSION

In this paper we presented a framework developed
for debugging a robotic soccer team which proved
to be useful for a human user to understand
the reasoning of an agent. Although it has been
developed for soccer, its implementation has been
carefully done to allow it to be easily adaptable to
other projects where off-line debugging of multiple
autonomous robots with different categories of
information is required.

It’s main capabilities were easiness of use on single
and multi-agent systems, multiple log files per
agent (reading and writing), information orga-
nization in categories and level of detail, syn-
chronization with video and different methods of
searching information in the log.

REFERENCES

Almeida, Lúıs, Frederico Santos, Tullio
Facchinetti, Paulo Pedreiras, Valter Silva and
Lúıs Seabra Lopes (2004a). Coordinating dis-
tributed autonomous agents with a real-time
database: The cambada project.. In: ISCIS.
pp. 876–886.

Almeida, Luis, Luis Seabra Lopes, P. Bartolomeu,
E. Brito, M. B. Cunha, J. P. Figueiredo,
P. Fonseca, C. Lima, R. Marau, N. Lau,
P. Pedreiras, A. Pereira, A. Pinho, F. Santos,
L. Seabra Lopes and J. Vieira (2004b). CAM-
BADA: Team Description Paper. In: CD of
the Robocup Symposium / TDP.

Bakker, Bastiaan, Cedric Le Goater, Marc
Welz, Lynn Owen andSteve Ostlind, Mar-
cel Harkema, Uwe Jger, Walter Stroebel,
Glen Scott, Tony Cheung, Alex Tapaccos,
Brendan B. Boerner, Paulo Pizarro, David
Resnick, Aaron Ingram, Alan Anderson and
Emiliano Martin (2005). Log for C++ Project
Website. 0.3.5rc3 ed.

Kitano, Hiroaki, Minoru Asada, Yasuo Ku-
niyoshi, Itsuki Noda and Eiichi Osawa (1997).
RoboCup: The Robot World Cup Initia-
tive. In: Proceedings of the First Interna-
tional Conference on Autonomous Agents
(Agents’97) (W. Lewis Johnson and Barbara
Hayes-Roth, Eds.). ACM Press. New York.
pp. 340–347.

Reis, Lúıs Paulo and Nuno Lau (2000). FC Portu-
gal Team Description: RoboCup 2000 Simula-
tion League Champion. pp. 29–40. Vol. 2019.
Springer-Verlag.

Santos, Frederico, Luis Almeida, Paulo Pe-
dreiras, Luis S Lopes and Tullio Facchinetti
(2004). An Adaptive TDMA Protocol for Soft
Real-Time Wireless Communication among
Mobile Autonomous Agents. WACERTS’04
RTSS’04.

Silva, Valter, Ricardo Marau, Lúıs Almeida,
J. Ferreira, M. Calha, P. Pedreiras and J. Fon-
seca (2005). Implementing a distributed sens-
ing and actuation system: The CAMBADA
robots case study. In: Proceedings of the 10th
IEEE International Conference on Emerging
Technologies and Factory Automation. Vol. 2.
pp. 781–788.

Stone, Peter, Patrick Riley and Manuela Veloso
(1999). Layered Extrospection: Why is the
agent doing what it’s doing?. Fourth Inter-
national Conference on Autonomous Agents
(Agents-2000).

Trolltech (2005). Trolltech - Cross-platform C++
GUI development Online Reference Docu-
mentation. In: http://doc.trolltech.com/.


