
Implementing a distributed sensing and actuation system:
The CAMBADA robots case study

V. Silva1, R. Marau2, L. Almeida2, J. Ferreira23, M. Calha2'3, P. Pedreiras2, J. Fonseca2
vfs(estga.ua.pt, {marau, lda}@det.ua.pt, {jjf, mjc}(est.ipcb.pt, {pedreiras, jaf}(det.ua.pt

IUniversidade de Aveiro
Esc. Sup. Tecnologia e Gestao

3754-909 Agueda

2Universidade de Aveiro
LSE-IEETA / DET
3810-193 Aveiro

3Inst. Polit. Castelo Branco
Escola Sup. de Tecnologia

Ava do Empresa'rio
6000-767 Castelo Branco

Abstract

The use of distributed computing architectures has
become commonplace in complex embedded systems
with potential advantages, for example, in terms of
scalability, dependability and maintainability. One
particular area in which that trend can be witnessed is
mobile autonomous robotics in which several sensors
and actuators are interconnected by means of a control
network. In this paper we address one case study
concerning the CAMBADA robots that were developed
at the University ofAveiro for the Robocup Middle Size
League. These robots have a distributed architecture
with two layers, a coordination layer responsible for the
global behaviors and a distributed sensing and actuating
layer that conveys internal state information and
executes coordination commands. This paperfocuses on
the latter layer, which is based on the FTT-CAN
protocol, following a network-centric approach that
provides an efficient framework for the synchronization
of all systems activities. We describe the computing and
communication requirements, the robot architecture, the
system design and implementation, and finally we
provide experimental results that show advantages with
respect to a non-synchronized distributed approach.

1. Introduction

Distributed Embedded Systems (DES) are typically
part of intelligent automatic equipment with a high
degree of autonomy. In most cases, DES have a strong
impact on human lives, either because they are used
within important economic processes, e.g. complex
machinery in factories, or because they control
equipment that directly interacts with people, e.g.
transportation systems [1].

The importance of DES has been growing steadily
and it is expected to grow even further as distribution
provides an efficient way to improve several desirable

properties in a system, from maintainability, to
scalability, composability and dependability, to name a
few [2] [3]. Also, DES are a natural support for higher
integration of resources in complex systems, e.g. robots,
cars and planes, with a potential for lower costs and
lower overall complexity [4].

However, the positive aspects of distribution do not
come for granted and specific techniques and protocols
must be used to achieve the desired properties.
Therefore, designing and deploying such techniques and
protocols is still an important research topic [1].

The control of robots, particularly autonomous mobile
robots, is one of the application fields where DES have
been increasingly used, seeking for cabling reductions
and simplification, improved maintainability, fault-
tolerance, scalability of functionality, etc.. In this paper
we address a specific case study that concerns the
CAMBADA robots developed at the University of
Aveiro for participation at the RoboCup Middle Size
League. These robots have a low level distributed
sensing and actuation system based on Controller Area
Network (CAN) that interconnects the motor drives, the
movement controllers, the odometry system and other
subsystems detailed later. This work focuses on the
communication and synchronization of activities, which
is carried out using the FTT-CAN [5] protocol. We show
how to implement an application on top of this protocol
as well as some of the benefits that arise from its use
with respect to other communication alternatives based
on non-globally synchronized frameworks.

The paper is structured as follows. Section 2 presents
some related work, section 3 shows the general
architecture of the CAMBADA robots while the
respective communication and computation requirements
are analyzed in section 4. Section 5 addresses some
relevant implementation issues, mainly those concerning
the use of the communication system and the
synchronization of activities across the distributed

This work was partially supported by the European Community through the ARTIST2 NoE (IST-004527) and by the Portuguese Government
through the project FCT-POSI/ROBO/43908/2002, also partially funded by FEDER.

0-7803-9402-X/05/$20.00 © 2005 IEEE 781 VOLUME 2

system. Finally section 6 presents preliminary experi-
mental results while section 7 concludes the paper.

2. Related Work

As referred before, there are several advantages that
may arise from the use of distributed architectures in
embedded control systems and such a distributed
approach has been often used in the specific field of
mobile and autonomous robotics for diverse application
scenarios. For example, [6] presents a robot for orange
picking that is divided into 4 platforms, each one with
two picking arms. An SP50 (later Foundation Fieldbus
FF-H1) fieldbus is used to provide connectivity between
the four platforms and support the required data
exchanges. [7] presents an industrial robot based on a
ProfiBus network. The authors simulate the system
operation using Matlab/ Simulink, and measure the
communication delays and level of synchrony achieved
among the activities carried out within the robot.

One particular protocol that has been substantially
used within mobile robots is CAN [8] due to its low
price, good reliability and timeliness properties.
Examples of using this protocol can be found in [9], [10]
[11]. The latter one is particularly relevant to this work
as it addresses the concerns of supporting a distributed
sensing and actuation system integrated in a more
complex architecture encompassing a deliberative level
that extends beyond the robot using a TCP/IP connection
with an adequate temporal firewall to isolate this level
from the lower one in which real-time constraints are
tight. In [12] the same authors discuss the impact that the
communication jitter of real-time data transfers can have
on the performance of control closed-loops and propose
a mixed CAN-based event/time-triggered protocol.

The control architectures referred above either use
event-triggered approaches that present poor control over
the communication jitter given the absence of relative
offsets, or they use time-triggered approaches for the
periodic traffic specified in a static way. In this work we
address the issues arising from the use of FTT-CAN [5]
to support the distribution of low level sensing and
actuation information. This protocol provides support for
both event and time-triggered traffic as well as support
for flexible time-triggered communication, allowing to
adapt the rates of the periodic communication on-line
according to the instantaneous needs. [13] shows the
interest of providing dynamic rate adaptation of the
periodic information in a mobile robot but using a
centralized architecture. Our work allows extending
those benefits to a distributed framework.

3. General architecture

The general architecture of the CAMBADA robots
has been described in [14]. Basically, the robots follow a
biomorphic paradigm, each being centered on a main

processing unit, the brain, which is responsible for the
higher-level behavior coordination, i.e. the coordination
layer. This main processing unit handles external
communication with the other robots and has high
bandwidth sensors, typically vision, directly attached to
it. Finally, this unit receives low bandwidth sensing
information and sends actuating commands to control
the robot attitude by means of a distributed low-level
sensing/actuating system, the nervous system (Figure 1).

At the heart of the coordination layer is the Real-Time
Database (RTDB) that contains both the robot local state
information as well as local images of a subset of the
states of the other robots. A set of processes update the
local state information with the data coming from the

mmurnicali Main High b=dwidth
EEE 801.1 lb>/ processor

\ / . t (~~~~~~~~~~~~~~~~~oordinationlayer

X ~~~~~~~~~~~~Low-levelcontrol layer

Figure 1. The biomorphic architecture of the
CAMBADA robots.

vision sensors as well as from the low-level control
layer. The remote state information is updated by a
process that handles the communication with the other
robots via an IEEE 802.11b wireless connection. The
RTDB is then used by another set of processes that
define the specific robot behavior for each instant,
generating commands that are passed down to the low-
level control layer (Figure 2).

IVisensorlal

I a 111 X ll~~~~~~~iterpreaioRTDB Intidgece
Wireless 1Xand
rn id& _ orintoComunication CoorinaIo

' ~~~~Low-level
I communication

I ~~~~~~~~handlerlI
F.

Motion o

I Kick Sse oio

Figure 2. The robots functional architecture
built around the RTDB.

The low-level sensing/actuating system follows the
fine-grain distributed model [2] where most of the
elementary functions, e.g. basic reactive behaviors and
closed-loop control of complex actuators, are
encapsulated in small microcontroller-based nodes
interconnected by means of a network. The nodes are
based on the PIC microcontroller 18Fx58 [15] operating
at 40MHz while the network uses the CAN protocol with
a bit rate of 250Kbps.

VOLUME 2782

At this level there are 3 DC motors with respective
controllers plus an extra controller that, altogether,
provide holonomic motion to the robot. Each motor has
an incremental encoder that is used to obtain speed and
displacement information. Another node is responsible
for combining the encoder readings from the 3 motors
and building a coherent displacement information that is
then sent to the coordination layer. Moreover, there is a
node responsible for the kicking system that consists of a
couple of sensors to detect the ball in position and trigger
the kicker. This node also carries out battery voltage
monitoring. Finally, the low-level control layer is
interconnected to the coordination layer by means of a
gateway attached to the serial port of the PC, configured
to operate at 11 5Kbaud. From the perspective of the low-
level control layer, the higher coordination layer is
hidden behind the gateway and thus, we will refer to the
gateway as the source or destination of all transactions
arriving from or sent to that layer.

Figure 3. The hardware architecture
of the low-level control layer.

4. Lower-level requirements

In the previous section we have identified the
functional and hardware architectures of the low-level
control layer. The specific mapping of the former over
the latter generates the operational architecture which
presents requirements concerning both the tasks that
need being executed on each node as well as the
messages that must be exchanged over the network. In
this section we will analyze in detail these requirements
which were used for the actual implementation. In
particular, the communication requirements are shown in
Table 1.

The Motion function depicted in Figure 2 spans
across 4 nodes, the 3 motor controllers plus the

holonomic controller that translates the robot velocity
vector set-point received from the upper layer into
individual speed set-points for each of the motors. Both
the motor controllers as well as the holonomic controller
execute in a periodic fashion but with different periods.
The former ones execute a PI-type closed-loop motor
speed control once every 5ms. This value has been
deduced from the dynamics of the robot. Moreover,
these tasks are relatively light, taking less than 1 ms to
accomplish. On the other hand, the holonomic controller
executes a cyclic conversion of the higher layer set-
points once every 30ms. This node is relatively loaded as
each conversion takes about 16ms to carry out. The
chosen period is, nevertheless, sufficiently small to
support a smooth robot motion.

In terms of communication the Motion function
requires the periodic transfer of the robot velocity vector
set-point from the gateway to the holonomic controller
and then the periodic transfer of the motor speed set-
points from the holonomic controller to the individual
motor controllers. Both transfers are carried out once
every 30ms. The former transfer requires two messages
(M6. 1, M6.2) to convey the linear and angular
information respectively. Concerning the latter transfer,
the motor speed set-points generated for the motor
controllers should be applied to each motor
approximately at the same time thus they are
piggybacked on the same message and transferred as a
broadcast (MI). Finally, the control loops of the 3 motor
controllers should also be synchronized among
themselves so that they generate motor actuation signals
at approximately the same time.

Another important subsystem is the one
corresponding to the Odometry function. This function
also spans across 4 nodes, the 3 motor controllers plus a
4th node that combines the individual encoder readings
into a coherent displacement information sent up to the
higher layer. The encoder readings are the same as used
by the closed-loop motor speed control and thus they are
sampled every 5ms, and this should be carried out
synchronously in all three motors. However, depending
on the desired precision in constructing the robot
displacement information, these readings can be sent
with a periodicity that varies from 5ms to 20ms (higher
to lower precision). During the execution of certain high
level behaviors the odometry information is not needed,
e.g. when tracking the ball, and thus it can also be
temporarily switched off. Three messages are used to
convey the encoder readings (M3. 1-M3.3). Upon
reception of these messages, the odometry node
calculates the robot position and orientation, taking
approximately 4ms, and sends it to the higher layer,
every 50ms, using 2 messages (M4. 1, M4.2). This period
is compatible with the cycles used by the processes
running within the higher layer. The Odometry function
also includes a pair of sporadic messages (M5.1, M5.2)
received from the higher layer to set or reset the current

VOLUME 2783

ID Source Target Type Period/mit (is) Size (B) Short description
Ml Holonomic ctrl Motor node[1:3] Periodic 30 6 Aggregate motor speeds set points
M2 Kicker Gateway Periodic 1000 2 Battery status

M3.1-M3.3 Motor node [1:3] Odometry node Periodic 5 to 20 3*3 Wheels encoder values
M4. 1-M4.2 Odometry node Gateway Periodic 50 7+4 Robot position + orientation
M5. 1-M5.2 Gateway Odometry node Sporadic 500 7+4 Set/reset robot position + orientation
M6.1-M6.2 Gateway Holonomic ctrl Periodic 30 7+4 Velocity vector (linear+angular)

M7 Gateway Kicker Sporadic 1000 1 Kicker actuation
M8-M12 Every node Gateway Sporadic 1000 5*2 Node hard reset

Table 1. Low-level control layer communication requirements
robot position and orientation information within the
odometry node. These messages are not expected to be
generated within less than 5OOms intervals (minimum
inter-arrival time - mit).

Finally, the Kick and System monitor functions are
integrated in the same node, the kicker controller, which
is lightly loaded. The former corresponds to executing
the kicking commands received from the higher layer.
These are conveyed within one sporadic message (M7)
which is not expected to be transmitted more often than
once every second. In fact, the kicker is electromagnetic
and takes about this time to recharge between
consecutive kicks. On the other hand, the latter function
currently encompasses the batteries level sampling
which is sent up to the higher layer using a periodic
message (M2) with a period of Is, as well as a set of 5
sporadic messages (M8-M12) that inform the higher
layer whenever a hard reset occurs in the respective
node.

5. Low-level control layer implementation

After having defined the operational architecture of
the low-level control layer and deduced the computing
and communication requirements the practical
implementation was carried out. Two approaches have
been followed, one without and another with global
synchronization among the activities executed at this
layer. The former approach used communication
functions of the type send and receive, as commonly
found in event-triggered systems, and without any
further support for synchronizing remote activities. At
fixed points within the respective cycle the data would
be transmitted using the send function and retrieved at
the receiver with the receive function.

The temporal behavior of the approach referred above
may suffer large delays due to the multiple
unsynchronized chained cycles. For example, consider
that a new velocity vector arrived at the holonomic
controller right after it started processing one cycle.
Then, the new vector would be processed one cycle later,
generating speed set-points for the motors with about
30ms additional delay, i.e., the cycle time of the
holonomic controller. These set-points would then be
transmitted over the network within one message,
possibly suffering an access delay caused by possible

transmissions from other unsynchronized nodes. Finally,
this message would arrive at a motor node right after this
node had started one speed control cycle thus holding the
new set-point until the next cycle causing a further delay
of 5ms. Comparing with the case in which the new data
would arrive just before the start of the cycle in which it
would be used, i.e. the best-case delay, the previous
situation corresponds to an additional delay of more than
35ms to process a new velocity vector. Figure 4
illustrates the impact of chained non-synchronized cycles
on the end-to-end delay (dee) for the general case of two
periodic tasks in different nodes, A and B, which
communicate via a periodic message.

Task A E

Message
Task B

d ee dee
Figure 4. Synchronization and end-to-end delay.

Moreover, this delay can vary on-line due to drifts in
the local clocks of the nodes, generating jitter in the
control signals. These additional delays and jitter can
cause degradation to the global control loops associated
to high level behaviors, such as tracking the ball.

On the other hand, this non-synchronized approach
has the advantage of being very simple to deploy. For
this reason, it was the first approach to be implemented.
As expected, the parameters of the global control loops
were relatively difficult to tune and a nervous robot
behavior was frequently observed.

Therefore, it was decided to use a communication
infrastructure based on CAN that would allow building a
globally synchronized framework so that relative phases
among all activities in the system, including tasks
execution in the nodes and message transfers over the
network, could be established as appropriate to maintain
the end-to-end delays of the information flows under
tight bounds. The FTT-CAN [5] protocol was used for
this purpose, which supports global synchronization of
tasks and messages according to a network-centric
approach [16]. Moreover, it combines the time-triggered
(synchronous) traffic with event-triggered (asynchr-
onous) traffic providing an efficient support to both
periodic and sporadic messages. Another feature, and
probably its most distinguishing one, is that the protocol

VOLUME 2784

supports on-line changes to the synchronous traffic,
allowing to switch off and on any message stream
according to current needs or even to adapt the rate, for
example, to control the provided Quality-of-Service.

In order to use FTT-CAN two more nodes were added
to the low-level control layer to perform the Master
function with replication for fault-tolerance purposes
[17][18]. The following section makes a brief
presentation of the basic concepts and operational
aspects ofFTT-CAN.

5.1. FTT-CAN basics
The FTT-CAN protocol (Flexible Time-Triggered

communication over CAN) is a time triggered protocol
that establishes a common notion of time across the
system using the regular transmission of a particular
synchronization message by a specific node called
Master. This message is called the Trigger Message
(TM) and its periodic transmission creates fixed duration
bus time slots called Elementary Cycles (EC). Each EC
is divided in two phases, one for the transmission of
time-triggered traffic, synchronously with respect to the
ECs framework, and another for the transmission of
event-triggered traffic, within which transmissions can
take place at any instant. These phases are called the
synchronous and asynchronous windows, respectively,
with the latter preceding the former (Figure 5). A gap is
used in between these windows to guarantee that the
asynchronous traffic does not interfere with the
synchronous one.

According to the needs of each application, the
maximum duration of the synchronous window can be
bounded (LSW), leaving a minimum bandwidth always
available to the aperiodic traffic, improving its
responsiveness.

The Master node controls the transmission of the
synchronous traffic whose periods and offsets are
expressed as integer multiples of the EC duration. A
master/multi-slave approach is used in which the Master
sends one command per EC, possibly triggering several
synchronous transmissions in the respective phase of that
EC. The Master triggering commands, called EC-
schedules, are conveyed within the TMs using a specific
bit encoding technique (Figure 5). The EC-schedules
may also include specific flags to trigger the execution
of tasks within the nodes, synchronously with the ECs
framework. These flags allow remote tasks to
synchronize with each other as well as with the
transmission of messages and using system wide offsets.

The scheduling of the synchronous part of the system,
including task triggers and synchronous messages, is
carried out by the Master node, on-line, based on a table
that contains the synchronous requirements. This is
called the Synchronous Requirements Table (SRT) and it
can be updated on-line, granting the operational
flexibility that characterizes this protocol.

The EC duration is configured off-line and has a
significant impact on the communication and computing
overhead of the system. Basically, the shorter it is the
higher the overhead but also the higher the temporal
resolution to express the messages properties. Therefore,
the common technique is to use the shortest period as
long as the corresponding overhead is admissible.
Typical values range from 1 to 1Oms.

Idle

- AW>-- -- SW > <-AW-->< SW >

TM AM MvlA SM SM AM M SM SM SM
1T]~ 2 3 7 3n Tm3n 7 3 73

Schedulling of event 5

Figure 5. FTT-CAN transmission schema.

5.2. Implementation using FTT-CAN
In order to effectively use FTT-CAN in a given

application it is necessary to identify the flows of
information related with cyclic activities executed in the
system, to determine what triggers each of those flows
and then to determine which should be the appropriate
offset of each transmission or activity knowing the
respective transmission and execution times. This has
been carried out in the previous section where the
information flows within the low-level control layer of
the CAMBADA robots were identified and
characterized. In this section we will see how FTT-CAN
was used to support the required synchronization.

The first aspect is to separate the periodic from the
sporadic traffic. The latter is handled by the
asynchronous subsystem similarly to a non-synchronized
framework. This separation is already accomplished in
Table 1. The periodic traffic is then named using FTT-
CAN synchronous identifiers.

The EC duration is set to 5ms which is the shortest
period among all periodic activities and messages, i.e.,
the closed-loop motor speed control period. For a trigger
message with 5 bytes, the communication overhead is
lower than 8.4% (420pts/5ms) while the computing
overhead is close to 1.5% (76ms/5ms). These values
were considered admissible given the application load.
Particularly, the communication load according to Table
1 is close to 27% of the bus bandwidth at 250Kbps.

Knowing the EC duration, all periods are expressed in
number of ECs. Then, the synchronization requirements
are analyzed to identify the set of activities that needed
synchronization and the respective set of synchronous
triggers. These inherit periods equal to those of the
related messages and are also named using appropriate
FTT-CAN identifiers.

Finally, the off-sets of all messages and synchronous
triggers are established so that transmissions are carried
out soon after the respective data becomes available and,

VOLUME 2785

conversely, activities are triggered enough in advance to
generate data before but as close as possible to the
respective transmission instant. Moreover, the
synchronous triggers allow triggering several remote
activities at approximately the same time (within a few
micro-seconds), as it is required by the Odometry
function. These concerns lead to increase the freshness
of the data in the information flows, reducing the
respective end-to-end latency and jitter, with a positive
impact in the performance of the respective global
control loops associated to the high level behaviours.

Table 2 shows the system SRT, including both
synchronous messages and triggers. The off-sets
extracted from the system requirements are expressed in
the column init time and they are also expressed in
number of ECs.

Figure 6 shows the timeline of the two main
synchronous information flows, separately, associated to
the Motion function (top) and the Odometry function
(bottom). In what concerns the Motion function, the flow
is triggered by a pair of messages (6,7) sent by the
gateway with off-set 0 and arriving from the higher layer
with a velocity vector. These values are received by the
holonomic controller that is synchronized in trigger 12,
which is produced right after the transmission of the
messages, with off-set of lEC. This trigger starts the
execution of the holonomic controller to process the new
velocity vector. The resulting motor speed set-points will
be available after 16ms, which rounds up to 4 ECs. Thus
the respective message (0) is transmitted to the motor
nodes in the following cycle, i.e. with an off-set of 5ECs.
Trigger 13 is used to synchronize the closed-loop speed
control of each motor with the arriving set-point. The
off-set is 6ECs to enforce a reduced latency between

reception and use of the set-points.
The transmission of the next velocity vector, and thus

the start of the next cycle, is carried out in the following
EC.

In what concerns the Odometry function, the
respective information flow starts with trigger 8, with
off-set 0, which causes the synchronous sampling of the
encoders in the 3 motors. These values are locally
accumulated until they are transmitted. In the example,
the transmission of the encoder readings is set to 2 ECs
(messages 1-3) and the respective values are produced
with trigger 9, in the EC before their transmission. Thus
the off-set of messages 1-3 is 2ECs while the off-set of
trigger 9 is lEC. The periods of these entities can vary
depending on the desired odometry precision from lEC
(highest) to 4 ECs (lowest). They can also be suspended
(period set to 0) when the Odometry function is not
needed.

The odometry node is triggered right after the
transmission of the messages 1-3 carrying the encoder
readings, using trigger 10 with an off-set of 3 ECs. Since
it executes in less than one EC, the production of the
current position and orientation (trigger 11) is carried out
in that EC (same off-set of 3 ECs) while the message
transmissions (messages 4,5) are assigned to the
following EC thus with an off-set of 4 ECs.

6. Experimental results

In order to assess the benefits of using FTT-CAN a
few experiments were carried out, comparing the system
timeliness with the case in which CAN was used without
support for synchronization among remote tasks. For that
comparison, we measured the end-to-end delay

FTT-CAN Source Destination Period Init time Short description
ID (#ECs) (#ECs)
0 Holonomic contr Motor node[1:3] 6 5 Motors speed setpoints
1 Motor 1 node Odometry node 2 (0-4) 2 Encoder Count in motor 1
2 Motor 2 node Odometry node 2 (0-4) 2 Encoder Count in motor 2
3 Motor 3 node Odometry node 2 (0-4) 2 Encoder Count in motor 3
4 Odometry node Gateway 10 4 Current position
5 Odometry node Gateway 10 4 Current orientation
6 Gateway Holonomic contr 6 0 Velocity vector (linear)
7 Gateway Holonomic contr 6 0 Velocity vector (angular)
8 --- Motor node[1:3] 1 0 Triggers the encoder readings
9 --- Motor node[1:3] 2 1 Triggers production of messages 1,2,3 at the

motor nodes (encoder readings)
10 --- Odometry node 2 3 Triggers the consumption of encoder

messages 1,2,3 at the odometry node
11 --- Odometry node 10 3 Event to produce messages 4,5
12 --- Holonomic contr 6 1 Triggers the consumption of Messages 6,7 in

holonomic controller
13 --- Motor nodes [1:3] 6 6 Triggers the consumption of Message 0 in the

motor nodes
Table 2. Low-level control layer message set and activity triggers.

VOLUME 2786

CAN BUl

Gateway

Holonomic Ctr

Motor

Motor l

MotorK

| de(

CAN BUS T
Motor R= W 0 0/ / I1 H

MotorZ W. 0 | In E E E In WI I

Motor

Odometrt

Figure 6. Timeline of the main information flows within the low-level control layer.
Top: motion. Bottom: odometry.

associated with the two information flows referred
before, i.e. Motion and Odometry functions. The first
flow was measured from the point in which the gateway
starts transmitting a velocity vector to when one of the
motors receives the corresponding speed set-point. The
second flow was measured from the point in which the
encoder of one motor is read to when the respective new
position is received by the gateway. The results are
presented in Table 3, concerning the maximum and
minimum values observed for the end-to-end delays (dee)
of both information flows in the two approaches referred
before, i.e. unsynchronized using CAN and globally
synchronized using FTT-CAN.

control purposes than the limitation on the end-to-end
delay reduction.

Another advantage of FTT-CAN is the easiness and
efficiency in triggering tasks with synchronous triggers.
In fact this is done without extra messages, just using the
Trigger Message with additional data bits to encode
them. These triggers also allow synchronizing tasks in
remote nodes with relatively high precision. In the
specific case of the closed-loop speed control in the 3
motors, the use of triggers allowed to synchronize all the
loops within +/-130ts.

7. Conclusions

Information flow
(all values in ns)

Motion
Odometry

CAN
max dee Min dee
64.4 38.8
21 12

FTT-CAN
max dee min dee
27.7 26.7
21.7 21.6

Table 3. Timeliness of information flows.

These results are according to expected as stated in
section 5. In fact, the absence of synchronization
between multiple chained cycles creates large delays
and, mainly, large delay variations (jitter). On the other
hand, the synchronization capabilities of FTT-CAN
allow establishing adequate off-sets that can be used to
reduce end-to-end delays, and mainly the associated
jitter. The former effect, however, i.e. reduction of end-
to-end delays, is only noticeable when the cycle
durations are large enough, at least 3 ECs long. For
shorter cycles, as it is the case with the Odometry
information flow, the temporal resolution of FTT-CAN
limits the achievable reduction in the end-to-end delay.
However, there is still a strong reduction in jitter, nearly
elimination, which is probably more beneficial for

Distributed embedded systems are becoming
pervasive, spanning application fields in which there are
stringent real-time and safety constraints. Such archi-
tectural option has a potential for several advantages, the
most important of which is, probably, the constraining of
complexity within manageable bounds.

The control of robots, particularly autonomous mobile
robots, is one of the application fields where distributed
embedded systems have been increasingly used, seeking
for cabling reductions and simplification, improved
maintainability, fault-tolerance, scalability of function-
ality, etc.. However, increasing requirements in terms of
responsiveness, arising from complex environments with
fast dynamics, stress the need for adequate architectural
support so that robots cope with sudden events that occur
in the environment and respond to them in a timely way.
One particular application that has been driving the need
for more reactivity is RoboCup where teams of mobile
robots play football. Robots need to move faster without
colliding with each other or against the field objects and
they must react promptly to the ball with sufficiently

VOLUME 2787

accurate control. This is only possible if the respective
control infrastructure is timely, in spite of its complexity.

In this paper we described the architecture of the
CAMBADA robots developed at the University of
Aveiro to participate in the RoboCup Middle Size
League. The paper focused on the robots distributed low-
level control layer that interconnects the motion,
odometry, kicking and monitoring subsystems. The
computing and communication requirements were
deduced, and then the paper focused on the
implementation of this layer using the FTT-CAN
protocol. The performance of this implementation was
compared with a previous implementation based on
CAN in which there was no control over the
synchronization of remote activities and chained control
cycles. Experimental results were shown where the
benefits of using a globally synchronized framework,
such as provided by FTT-CAN, were clear. The jitter in
the end-to-end delay of the main information flows was
nearly eliminated and, in the case of the motion control,
the end-to-end delay was substantially reduced.

Future work will address the dynamic reconfiguration
capabilities supported by FTT-CAN so that the rate of
the information flows is adapted on-line according to the
instantaneous needs. This will allow maximizing the
bandwidth available to the asynchronous communica-
tion, both to react promptly to asynchronous events or
commands and to allow time for retransmissions upon
errors. The released bandwidth can also be used to allow
the insertion of more subsystems for complementary
functionalities.

The paper focused on the robots distributed low-level
control layer, only. However the control loop includes
components in both upper and low-level layers (Figure
2). Therefore, the robot global performance can be
further enhanced with the use of global synchronization
mechanisms, allowing minimizing the overall end-to-end
latency. This topic will also be addressed in future work.

References

[1] Embedded Systems Design, Vol. 3436, 2005, ISBN: 3-
540-25107-3

[2] Kopetz, H. Real-Time Systems: Design Principles for
Distributed Embedded Applications, Kluwer Academic
Publishers, 1997.

[3] P. Koopman. Critical Embedded Automotive Networks.
IEEE Micro, IEEE Press, July/August 2002.

[4] Rushby, J., Bus Architectures For Safety-Critical
Embedded Systems, in Proceedings of the First
Workshop on Embedded Software, Lecture Notes in
Computer Science vol. 2211, pp 306-323, 2001.

[5] Almeida, L., Pedreiras, P., Fonseca, J.A.G., "The FTT-
CAN protocol: Why and how", IEEE Transactions on

Industrial Electronics, Volume 49, Issue 6, Dec. 2002,
pp. 1189-1201

[6] Cavalieri, S., Stefano, A., Mirabella, O., "Impact of
Fieldbus on Communication in Robotic Systems", IEEE
Transactions on Robotics and Automation, Vol. 13, N. 1,
February 1997.

[7] Valera, A., Salt, J., Casanova, V., Ferrus, S., "Control of
Industrial Robot With a Fieldbus", Proc. 7th IEEE Int.
Conf. on Emerging Technologies and Factory
Automation. ETFA '99. Vol. 2, 18-21 October 1999.

[8] Bosch, Robert [1991], CAN Specifications Version 2.0,
BOSCH, Stuttgart

[9] Mock, M., Nett, E., "Real-Time Communication in
Autonomous Robot Systems", Proc. 4th Int. Symp. on
Autonomous Decentralized Systems, 1999, Integration of
Heterogeneous Systems, 21-23 March 1999, pp. 34-41

[10] Kongezos, V., Allen, C.R., "Wireless Communication
between A.G.V.'s (Autonomous Guided Vehicle) and the
insdustrial network C.A.N. (Controller Area Network)",
Proc. 2002 IEEE Int. Conf. on Robotics & Automation
Washington, DC, May 2002.

[11] J. L. Posadas Yagile, P. Perez, J. Sim6, G. Benet and F.
Blanes. Communications structure for sensory data in
mobile robots. Engineering Applications of Artificial
Intelligence 15, pp341-350, 2002.

[12] P.Perez, G.Benet, F. Blanes, J.E. Sim6, Communication
Jitter Influence on Control Loops Using Protocols for
Distributed Real-Time Systems on CAN bus, Proc. of
IFAC SICICA 2003, Aveiro, Portugal, July 2003.

[13] G. Beccari, C. Caselli, M. Reggiani, F. Zanichelli, "Rate
Modulation of Soft Real-Time Tasks in Autonomous
Robot Control Systems", Proc. 11th Euromicro Conf. on
Real-Time Systems, RTS'99, York, UK, June 1999.

[14] Almeida, L., Santos, F., Facchinetti, T., Pedreiras, P.,
Silva, V., Lopes, L., "Coordinating distributed
autonomous agents with a real-time database: The
CAMBADA project", Proc. ISCIS 2004 (19th Int. Symp.
on Computer and Information Sciences, Kemer-Antalya,
Turkey, October 27-29, 2004.

[15] Microchip website, available at www.microchip.com
[16] M.J. Calha, J.A. Fonseca - "Adapting FTT-CANfor the

joint dispatching oftasks and messages", WFCS'02 - 4th
EEE Int Workshop on Factory Communication Systems,
Vasteras, Sweden, August 27-30, 2002

[17] E. Martins, J. Ferreira, L. Almeida, P. Pedreiras, J.A.
Fonseca. An Approach to the Synchronization of Backup
Master in Dynamic Master-Slave Systems. Work-in-
Progress Session of RTSS 2002, IEEE 23rd Real-Time
Systems Symposium, Austin, USA, December 2002.

[18] J. Ferreira, L. Almeida, E. Martins, P.Pedreiras, J.A.
Fonseca, "Enforcing Consistency of Communication
Requirements Updates in FTT-CAN1', Workshop on
Dependable Embedded Systems, SRDS2003, 22nd
Symposium on Reliable Distributed Systems, Florence,
Italy, 6-8 October, 2003

VOLUME 2788

